Original Article
Clinical outcomes and cost analysis for unilateral versus bilateral pedicle screw fixation in two levels during minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF): a comparative analysis

Kang Han1,2*, Quanyou Gao2*, Haoran Gao2, Yao Lu3, Na Bian1, Qingxi Meng1, Xiang Chen4, Changsheng Yang1, Zengkun Yang1, Jixian Qian2, Tingbao Zhao1

1Department of Spinal Cord Injury, General Hospital of Jinan Military Area Command of Chinese PLA, Jinan, Shandong, P. R. China; 2Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, P. R. China; 3Department of Orthopedic Surgery, Xi’an Honghui Hospital, Medical College of Xi’an Jiaotong University, No. 76, Nanguo Road, Beilin District, Xi’an, Shanxi, P. R. China; 4Department of Baylor College of Medicine, 1709 Dryden Road, Houston, Texas, United States.

*Equal contributors.

Received January 6, 2016; Accepted May 4, 2016; Epub June 15, 2016; Published June 30, 2016

Abstract: Study Design: Retrospective clinical study of 116 patients who underwent either a bilateral or unilateral TLIF procedure for the treatment of degenerative lumbar diseases. Objectives: We design this retrospective clinical study to compare the clinical, radiological outcomes and complication of unilateral pedicle screw (UPS) versus bilateral pedicle screw (BPS) in degenerative lumbar diseases after MIS-TLIF. Summary of Background Data. Studies have shown that minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) was used in a large number of lumbar degenerative disorders. However, unilateral or bilateral pedicle screw fixation after MITLIF remains controversial, especially in two-level surgery. Methods: We retrospectively analyzed 116 consecutive patients who had two-level MIS-TLIF at L4/L5 and L5/S1 from January 2010 to January 2014 and the clinical and radiological outcome and the complication were compared. Of the 116 patients for analysis, 52 patients underwent unilateral fixation, and 64 patients underwent bilateral fixation. Results: There was no statistically significant difference in baseline demographic characteristics and in hospital-stay period between the two groups (P>0.05). There was a significantly longer operating time, more blood loss and X-ray exposure times in BPS comparing with UPS (P<0.05). Clinical outcomes in two groups such as the pain (VAS) and Oswestry Disability Index (ODI) improved significantly after surgery and no difference was found between them (P>0.05). The number of patients who have good or excellent outcomes in UPS was 84.6% which in BPS was 82.3%. No significant difference was found in fusion rate and total complication rate between the two groups (P>0.05). Conclusion: There was no significant difference between the two fixation methods of MIS-TLIF in clinical outcomes and complications. However, unilateral pedicle screw has some superiorities such as shorter operating time, lower cost, less blood loss and X-ray exposure. Unilateral pedicle screw might be more suitable in performing two-level pedicle screw fixation after MIS-TLIF.

Keywords: Minimally invasive, transforaminal lumbar interbody fusion (tlif), unilateral, bilateral, pedicle screw fixation, degenerative spondylolisthesis, clinical outcomes, radiographic analysis

Introduction
For a long time, posterior lumbar interbody fusion (PLIF) was regarded as the major decompressive surgery to treat the lumbar degenerative diseases [1, 2]. However, more and more shortage were found such as dural tear, epidural bleeding, neural injury, damage of cauda equina as well as adjacent soft tissue sever-
sive spine, minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) which could has the less invasive variant has grown significantly in popularity and has been studied in detail [7, 8]. Through a small, paramedian muscle-splitting exposure, the objective of the spinal decompression, interbody arthrodesis and pedicle screw fixation can be realized and the blood loss and hospital stay were obviously reduced [9].

Generally, bilateral pedicle screw fixation after MIS-TLIF is the standard of instrumentation to provide spinal stability and it seems that bilateral pedicle screw fixation could have a better rigid fixation and fusion rate [10]. However, unlike open-TLIF, BPS need a second incision and exposure which Will inevitably lead to longer operative time, more expensive instrumentation use, bigger tissue damage and more times of X-ray exposure [11]. In fact, the necessity and choice of BPS after the MIS-TLIF has been questioned a lot recently especially when surgical trends have emphasized the minimization of exposure and tissue destruction [12]. In a 87-patients study, Suk et al. found that there was no difference in clinical outcomes and fusion rates between UPS and BPS [13, 14]. In addition, some studies demonstrated UPS was better than BPS [15]. On the contrary, an in vivo animal model study considered that UPS were consistently less rigid [16] and a finite element analysis were not favored for UPS used in contralateral axial rotation [17]. A recent biomechanical study in vitro founded that the UPS after TLIF operation have significantly increased segmental range of motion, off-axis movement and reduced stiffness. In all, the appropriateness of the ways of fixation is still unclear and controversial. What is more, these studies mainly focused on one-level lumbar fusion and few studies involved two-level degenerative lumbar diseases.

In this study, we try to compare the hospital cost and clinical outcome of the patients who have the MIS-TLIF with unilateral or bilateral pedicle screw fixation. We selected the patients whose lesion at L4/L5 and L5/S1 because this levels are the most common location of lumbar disc disease, spinal stenosis and spondylolisthesis. We hope to could provide the theoretical basis for the clinical treatment of MIS-TLIF through our experiment.

Materials and methods

Ethics statement

The research was approved by the Ethics Review Committee of General Hospital of Jinan Military Area Command of Chinese PLA, Jinan, Shandong, China (approval ID: 2014103) and written informed consent was obtained from all participating patients.

Cohort selection

A total of 116 patients who underwent MIS-TLIF at the General Hospital of Jinan Military Area Command of Chinese PLA between 2010 and 2014 were retrospectively reviewed. Patients included were between the ages of 28 and 76 at the time of operation. All 116 patients were diagnosed with plain radiographs, CT scans, and MRI and had either a unilateral (52 patients) or a bilateral (64 patients) MIS-TLIF for L4/L5 and L5/S1 spinal stenosis and were studied in a follow-up (Figures 1, 2). The median follow-up was 31.3 months (range 12-58 months). No patient died during the follow-up period. Indications for the surgery of MIS-TLIF included lumbar disc disease, spinal stenosis and spondylolisthesis. The patients who had previous lumbar surgery were excluded.

Surgical technique

All operations were performed by the same surgeon. When the general anesthesia had the satisfactory result, the patient was placed at the prone position. Then the operative level and incision was marked by using G-arm fluoroscopy. After the disinfection and surgical draping, a 4.5 cm paramedian incision was made over the plane between the longissimus and multifidus components of the sacrospinalis muscle. Then a tubular retractor (CareFusion, San Diego, CA) was placed and maintained exposure. A complete facetectomy and the decompression including the central stenosis, the ligamentum flavum and its bony attachment, the deep cortical surface of the contralateral lamina, lateral recess and foramen was performed. The removed bone was handled to granular for later use as the locally harvested autograft. Then, discectomy and intervertebral disc were performed, and the cage was placed. With the help of the SpheRx pedicle screw system (NuVasive, San Diego, CA), percutaneous lumbar pedicle screws were inserted unilaterally or bilaterally under fluoroscopic. Finally, the
The surgical site was copiously irrigated and closed in consecutive layers. When the bilateral instrumentation was performed, a second paramedian incision was performed on the contralateral side and an additional pedicle screw fixation was percutaneous performed.

Post-surgery rehabilitation

All patients were given antibiotics to prevent infection in 48 hours after the operation and they performed the exercises on the bed in the first 5 days. Then they were permitted to begin ambulation while wearing the lumbus sacrum orthosis. The patients were request not to do the impetuous exercise and protect their lumbus in the first 3 months after the operation, especially in the first 3 weeks. Generally, the patients were allowed to have the discharge from hospital 5 days after the surgery.

Clinical outcome

Clinical outcomes were assessed by the review, clinic notes, phone questionnaire and Email. The date including age, sex, diagnosis, inpatient length of stay, operative time, blood loss and X-ray exposure were accessed and sorting.
The clinical outcome were determined by visual analog scale (VAS) [18] and Oswestry Disability Index (ODI) [19]. Briefly, according to the Odom's criteria [20], the outcome can be rated either excellent, good, fair, or poor. Fusion and instrumentation status was assessed by radiographic follow-up like CT and radiography and were determined by the Bridwell grading system [21] which could be rated for 4 levels.

Statistical analysis

All values in the paper were expressed as the means ± SD, and all error bars represent the standard deviation of the mean. Student’s t test, chi-square test and fisher exact tests were used to determine significance. All statistical tests were two-sided and P value of <0.05 was considered statistically significant. Statistical analyses were performed using SPSS 17.0 software (SPSS Inc, USA).

Results

Of all 116 patients, 52 patients have the unilateral pedicle screw (Figure 1) and 64 patients have the bilateral pedicle screw (Figure 2). The patient demographics and descriptive statistics are provided in Table 1. Mean age was 54.8±12.8 years for UPS group and 51.7±14.4 for the BPS group. The median follow-up was 31.3 months (range 12-58 months). There were no statistically significant differences between the two groups regarding the age or gender, so the patients in the two groups were comparable.
According to perioperative assessments (Table 2), the average length of stay in the unilateral group (9.5±1.0 days) was not significantly different from that in the bilateral group (9.0±1.9 days). The operative time of the unilateral group were significantly shorter than that of bilateral group (65.3±15.7 minutes versus 100.2±26.5 minutes, P = 0.020) and the blood loss were significantly lower in the unilateral group (90.8±19.9 ml versus 129.3±27.2 ml, P = 0.019). The X-ray exposure times of unilateral group were significantly lower than that of bilateral group (7.67±1.75 times versus 11.83±2.48 times, P = 0.007). No statistically significant difference was found for complications. One patient had the superficial layer skin infection in bilateral group and one patient had the slight cage moving in UPS group. No reoperation was performed as the purpose to handle the complications.

Now, lumbar fusion is a very common surgical procedure in the treating for degenerative lumbar diseases and there are a variety of ways to achieve the aim of fusion [22]. With the surgery technological advancements and a better understanding of the morbidity of prolonged muscle retraction, the minimization of exposure and tissue destruction are needed. MIS-TLIF including decompression and instrumentation placement is very popular in clinic at present. One reason may be that the percutaneous screws could reduce the trauma, blood loss and the risk of neurologic injury [23].

King et al. [24] first reported the facet screws for lumbosacral fixation in 1948 which have a high risk of failure. The technique was modified by Boucher in 1959 in using of more longer screws [25]. In 1984, the screw was first thought to be “strong screw” by being inserted

Radiographic outcome were obtained at 5days, 6 and 12 months after the surgery by using of X-rays, and CTs (Table 2). Though there were 8 patients of unilateral group and 10 patients of bilateral group who were defined as unfused 6 months after the surgery, All people had solid fusion 12 months after the surgery. Regarding clinical outcomes (Table 3), the VAS and ODI scores were lower in the UPS group than that in the BPS group at 5 days after the surgery, but there was no significant difference (P>0.05). There were no significant difference between 2 groups at 6 and 12 months after the surgery. 90.4% (47/52) of the patients of the UPS group had good or excellent outcomes and the date was 90.6% (58/64) in the BPS group. This was not statistically significant (P = 0.937) (Table 2).

The hospital cost was significantly lower in UPS than BPS as a result of different implant cost (P<0.05). The cost of implants for the UPS group was 32.3% less than those for the bilateral group.

Table 1. Comparison of the demographic data of the patients in the BPS and the UPS groups

<table>
<thead>
<tr>
<th></th>
<th>UPS</th>
<th>BPS</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO.</td>
<td>52</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Age (y)</td>
<td>54.8±12.8</td>
<td>51.7±14.4</td>
<td>0.70>0.05</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td>0.78>0.05</td>
</tr>
<tr>
<td>Male</td>
<td>29</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>23</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Disease</td>
<td></td>
<td></td>
<td>0.84>0.05</td>
</tr>
<tr>
<td>Lumbar disc disease</td>
<td>28</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Spinal stenosis</td>
<td>17</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Spondylolisthesis</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Follow-up (mo)</td>
<td>33.2±14.1</td>
<td>30.0±12.7</td>
<td>0.79>0.05</td>
</tr>
</tbody>
</table>

Table 2. Comparison of the clinical results observed in the patients of the BPS and the UPS groups

<table>
<thead>
<tr>
<th></th>
<th>UPS</th>
<th>BPS</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay (d)</td>
<td>9.5±1.0</td>
<td>9.0±1.9</td>
<td>0.585</td>
</tr>
<tr>
<td>Operative time (min)</td>
<td>65.3±15.7</td>
<td>100.2±26.5</td>
<td>0.020</td>
</tr>
<tr>
<td>Blood loss (mL)</td>
<td>90.8±19.9</td>
<td>129.3±27.2</td>
<td>0.019</td>
</tr>
<tr>
<td>X-ray exposure times</td>
<td>7.67±1.75</td>
<td>11.83±2.48</td>
<td>0.007</td>
</tr>
<tr>
<td>Complications</td>
<td>1 (1.9%)</td>
<td>1 (1.6%)</td>
<td>0.88</td>
</tr>
<tr>
<td>Fusion 6 months 12 months</td>
<td>44 (84.6%)</td>
<td>54 (84.3%)</td>
<td>0.97</td>
</tr>
<tr>
<td></td>
<td>52 (100%)</td>
<td>64 (100%)</td>
<td>1</td>
</tr>
<tr>
<td>Clinical outcome</td>
<td></td>
<td></td>
<td>0.937</td>
</tr>
<tr>
<td>Excellent</td>
<td>20</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>27</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Fair</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Regarding clinical outcomes (Table 3), the VAS and ODI scores were lower in the UPS group than that in the BPS group at 5 days after the surgery, but there was no significant difference (P>0.05). There were no significant difference between 2 groups at 6 and 12 months after the surgery. 90.4% (47/52) of the patients of the UPS group had good or excellent outcomes and the date was 90.6% (58/64) in the BPS group. This was not statistically significant (P = 0.937) (Table 2).

The hospital cost was significantly lower in UPS than BPS as a result of different implant cost (P<0.05). The cost of implants for the UPS group was 32.3% less than those for the bilateral group.
from the contralateral lamina into the ipsilateral facet joint [26]. However, this technique seems to be associated with a high incidence of neurologic injuries. In the Montesano's report [27], the incidence of transient neurologic deficits was 11%, and the data in another report [28] was 7%.

Unlike the open procedure, MIS-TLIF could significant minimize tissue injury, cause less blood loss, raise the speed of recovery and decrease postoperative pain [29] which are more welcome by patients. Because the total facetectomy are needed in the surgery which results in instability, pedicle screw fixation is essential [23]. However, to date there were constant controversy over the unilateral or bilateral pedicle screw fixation. Schleicher et al. reported that bilateral pedicle screw augmentation offered significantly more stability than UPS in 8 fresh frozen human cadaveric study [30]. Slucky found it was not enough stiff if using unilateral pedicle screw construction alone [23]. A biomechanical experiment was also reported by Yucesoy that UPS was not fit for a double-level unilateral lesion [31]. However, Ferrara [32] et al. found there was no significant difference between UPS and BPS in a human cadavers study. Xue [33] reported a 80 patients study of UPS and BPS in TLIF which showed that there was no difference in postoperative outcomes while UPS group could significantly shorter operative time, less blood loss, and lower implant cost. Moreover, McAfee PC [34] reported that BPS fixation can not only lead to device-related osteoporosis but also the adjacent segment degeneration.

For the question of stability of UPS in TLIF, a series of studies were performed. In a biomechanics study Chen [17] found that UPS fixation was good enough to maintain the stability. Moreover, it was reported that UPS fixation had a lower risk of adjacent-segment degeneration [35] and reduced the stress shielding [16]. Using of UPS has been advocated in many reports [33, 36]. Conversely, Aoki et al. observed that the risk of cage migration is much high in UPS group [35]. Slucky AV reported that UPS could cause significant offaxis rotational motions, which would hurt the stability and fusion [23].

Unlike open-TLIF, MISS-TLIF has its own features. Bilateral pedicle screw augmentation means an additional incision, trauma and more cost. So whether there are significant difference of clinical outcomes between UPS and BPS is very important for the instrument choose. In the present study, we present a retrospective clinical study of 116 patients of at least 12 months follow-up. As far as we know, this is the biggest sample size retrospective study of MIS-TLIF on unilateral versus bilateral pedicle screw fixation. The results indicated that there was no statistically significant difference in clinical outcomes between two groups such as the pain and ODI. No significant difference was also found in fusion rate and total complication rate between the two groups. However, UPS involves shorter surgical time, less blood loss, X-ray exposure and decreasing cost. Thus, UPS might be more suitable for performing the two-level pedicle screw fixation and lumbar interbody fusion in MIS-TLIF.

The present study has several limitations. First, the study is a retrospective analysis which means a insufficiency for the conclusion. Second, the follow-up period is relatively shorter comparing with other studies for long-term outcomes. In addition, our study size was still smaller and we narrowed our criteria to two level disease. Last but not least, not all the patients were given the postoperative CT scans which may result in deviations in the fusion status. Multicenter studies with larger participants and long-term follow-up periods are necessary to further determine the benefits of unilateral versus bilateral fixation in MIS-TLIF.

Conclusion

In conclusion, in the patients with L4/L5 and L5/S1 level selected in the present study, unilateral instrumentation provides similar clinical and radiological outcomes to bilateral fixation while the cost and the perioperative data including blood loss, surgical time and X-ray exposure in UPS are better than that in BPS. Although additional larger and longer prospec-
tive analyses are needed to further confirm the outcomes of the UPS and BPS, the results in this study indicate that a clear advantage to the use of the UPS for performing two-level pedicle screw fixation after MIS-TLIF.

Acknowledgements

The reported work was supported in part by research grants from the president funding of General Hospital of Jinan Military Area Command of Chinese PLA (Grant# 2015ZX01 to KH). We would like to thank Shoufeng Jiao, Qunqun Shan, Quanyou Gao, Weigao Xue, Jian Qi, Zhaohu Mao, Shusen Tan, Baolong Wang and Zengkun Yang for their excellent technical assistance and helpful discussions. The research was approved by the Ethics Review Committee of General Hospital of Jinan Military Area Command of Chinese PLA, Jinan, Shandong, China (approval ID: 2014103) and written informed consent was obtained from all participating patients.

Disclosure of conflict of interest

None.

Address correspondence to: Tingbao Zhao, Department of Spinal Cord Injury, General Hospital of Jinan Military Area Command of Chinese PLA, Jinan, Shandong, P. R. China. E-mail: gan_7758525@163.com; Jixian Qian, Department of Orthopedic Surgery, Orthopedics Oncology Institute of Chinese PLA, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, P. R. China. E-mail: gan_7758525@sina.com

References

