Lower limit of antioxidant activity in follicular fluid: relationship to embryo quality in IVF cycle

Bo Huang, Fei Yang, Xiyuan Dong, Yu Zheng, Huiping Tan, Jihui Ai, Lei Jin

Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan 430030, People’s Republic of China

Received January 10, 2016; Accepted July 10, 2016; Epub August 15, 2016; Published August 30, 2016

Abstract: Human follicular fluid (FF) forms the microenvironment of the developing oocyte and has an important influence on embryo development. Although some published report showed their results of associations between antioxidant activity of FF and embryo quality, there was no information on the lower limit of antioxidant activity in FF which had negative impact on embryo quality. The antioxidant activity of 407 FF samples from 52 infertile patients undergoing IVF were collected and determined by α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging and reducing power assay. The lower limit of DPPH radical scavenging percentage and reducing power were determined to be 18.3% and 0.257, respectively. It means FF may adversely affect the embryo development when the DPPH radical scavenging ability or reducing power below the lower limit. This estimated lower limit was further validated in FF samples of embryo grading I-IV. This cut off value of antioxidant activity of FF is expected to assist embryologists and clinicians in predicting development of embryo from infertile patients undergoing in vitro fertilization (IVF).

Keywords: In vitro fertilization, antioxidant activity, lower limit, embryo quality

Introduction

Nowadays, assisted reproductive techniques (ART) account for the birth of more than 3 million babies worldwide, and the number of in vitro fertilization (IVF) cycles performed increases every year [1, 2]. However, an overall pregnancy rate of 30-40% per started cycle is obtained in many centers [3, 4]. Amongst the various factors that adversely affect IVF outcome, oxidative status has proved as one of the important factors that affect embryonic development [5].

Human follicular fluid (FF) forms the microenvironment of the developing oocyte and has an important influence on embryo development [6]. FF is rich in low-molecular weight metabolites, which are direct or indirect regulators of oxidative stress and antioxidant activity [7]. Oxidative status is involved in the etiology of defective embryo development [8]. Various published report has shown that significantly increased reactive oxygen species, high lipid peroxidation and decreased antioxidant capacity in follicular fluid (FF) correlate with embryo quality [9-12]. At the same time, FF has its antioxidant system, which include superoxide dismutase, catalase, thioredoxin and glutathione peroxidase [13-15], vitamins [16, 17]. The free radical activity is also associated with parameters of ovarian responsiveness and in vitro fertilization (IVF) outcome [18]. This suggests clear associations between antioxidant activity of FF and embryo quality [19]. However, some researchers showed embryo quality does not vary with the antioxidant status of FF [20]. Furthermore, some studies found that patients who become pregnant by IVF had lower antioxidant activity than non-pregnant women [21]. Therefore, the lower limit of antioxidant activity in FF may be required for consideration in IVF.

The goal of the current study was to describe the lower limit of FF’s antioxidant activity below which embryo development will be adversely affected. The control chart is applied to investigate the antioxidant cut-off level in FF of patients undergoing IVF. The control chart could obtain the threshold value at which the process output was advised statistically unlikely while a central line shows the process mean [9]. To the
best of our knowledge, few studies have examined the lower limit of antioxidant activity in FF by free radical scavenging and reducing power assays. For this purpose, 407 FF samples from 52 infertile patients undergoing IVF were collected for this study.

Materials and methods

Chemicals

α,α-diphenyl-β-picrylhydrazyl (DPPH) was purchased from Sigma-Aldrich (St. Louis, MO). All other chemicals used for analysis were AnalaR grade and obtained from China Medicine (Group) Shanghai Chemical Reagent Corporation (Shanghai, China).

Study protocol

Ethics approval for this project was obtained from the ethics committee of Tongji Hospital. Enrolment occurred between March 2013 and October 2013. All patients who signed written informed consent were undergoing IVF treatment at the Reproductive Medicine Centre, Tongji Hospital.

This was a noninterventional study of patients undergoing routine practice. In order to exclude the influence of other infertility reasons on the antioxidant activity of FF, the reason for infertility of all women was tubal factor. And, all women from 22 to 39 years of age (mean, 30.1 ± 3.2) were non-smokers and had been unable to be pregnant naturally for at least one year. Patients underwent controlled ovarian stimulation COS with the use of a GnRH agonist long protocol [22]. The pituitary suppression was achieved by subcutaneous injection of triptorelin acetate (Decapeptyl, Ferring; Diphereline, Ipsen) daily starting in the midluteal phase of the preceding cycle [23]. When complete pituitary desensitization was confirmed by a low plasma E₂ level of ~30 pg/mL and an LH level of ~2 mIU/mL, ovarian stimulation was initiated by intramuscularly administering 150-300 IU/d recombinant FSH (Gonal-F, Serono; Puregon, MSD). The FSH dosage was adjusted according to the ovarian response, which was assessed by the transvaginal ultrasound and serum E₂ level. Recombinant hCG (250 mg; Ovidrel; Šerono) was given to trigger ovulation when two leading follicles reached a mean diameter of 18 mm. Oocytes were retrieved transvaginally 34-36 hours after hCG administration.

Collection and processing of FF

FF were collected during oocyte retrieval by follicle aspiration under ultrasonographic control. Care was taken to completely aspirate each follicle within one tube. Each follicle was aspirated separately. FF from follicles containing more than one oocyte or no eggs was excluded from the analysis. Specimens that were contaminated with blood were discarded. Samples were centrifuged at 1000×g for 10 min. The clear supernatant was divided into aliquots and frozen immediately at -80°C. A total of 407 FF samples of 52 infertile women were collected for further analyzed.

IVF procedure

The methods for sperm preparation, IVF and embryo culture have been described previously [24]. Semen was collected in sterile container by masturbation after 3-5 d of sexual abstinence and then kept for 30 min at 37°C. After liquefaction, samples were analyzed for sperm concentration, motility and morphology according to the World Health Organization criteria [25]. The oocytes were incubated in G-IVF medium (Vitrolife, Sweden). Normally fertilized oocytes were continuously cultured in G1 medium for two more days. Usually fewer than two best-quality embryos were transferred on day 2 or 3 after oocyte retrieval, and excess good-quality embryos were cryopreserved for subsequent frozen-embryo transfer (FET) cycles. Morphological evaluation of the embryos was performed on day 3 (72 h) based on number of blastomeres, rate of fragmentation, multinucleation of the blastomeres and early compaction [26]. Day 3 embryos were scored on a scale of I (high grade) to IV (low grade) [27, 28].

Measurement of DPPH radical scavenging capacity

The DPPH free-radical scavenging capacity of FF was tested according to the published method [29] with slight modifications. 0.4 mL FF sample was mixed with 3.6 mL 0.2 mM DPPH in methanol. The mixture was centrifuged at 1000×g for 10 min. The absorbance of clear
Lower limit of antioxidant activity in follicular fluid

Table 1. The relationship between antioxidant activities in follicular fluid of infertile women undergoing IVF and their embryo quality

<table>
<thead>
<tr>
<th>Embryo quality</th>
<th>DPPH radical scavenging percentage (%)</th>
<th>Sig.</th>
<th>Reducing power</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grades I and II embryos</td>
<td>35.8 ± 6.8</td>
<td>P < 0.05</td>
<td>0.428 ± 0.067</td>
<td>P < 0.05</td>
</tr>
<tr>
<td>Grades III and IV embryos</td>
<td>32.3 ± 8.3</td>
<td></td>
<td>0.396 ± 0.073</td>
<td></td>
</tr>
</tbody>
</table>

Determination of reducing power

The reducing power of FF sample was determined according to the procedure described by published method [30]. FF sample was mixed with 2.5 mL potassium ferricyanide (1%), 2.5 mL trichloroacetic acid (10%) and 2.5 mL sodium phosphate buffer. Mixture was centrifuged at 1000×g for 10 min. 2.5 mL Distilled water and 0.5 mL ferric chloride (0.1%) were mixed with 2.5 mL upper layer, and absorbance was determined at 700 nm. Higher absorbance of the sample indicated stronger reducing power.

Statistical analysis

All data analysis was performed using Statistical Package for Social Sciences (SPSS) version 13.0. The method validation data of all experiments was following: DPPH assay: mean, 35.10%; CV, 1.0%; 95% CI, 34.21-35.99. Reducing power assay: mean, 0.425; CV, 0.9%; 95% CI, 0.415-0.435. The control chart (3 sigma) was a time plot of sub-sample statistic with a central line, upper control limit (UCL) and lower control limit (LCL). Between-groups data was analyzed using the nonparametric Mann-Whitney U-test and χ² tests. Statistical significance was determined at P < 0.05.

Results

Data concerning two methods of antioxidant activity were presented in Table 1. The antioxidant activity of FF was statistically related to embryo quality in IVF. In this study, the embryos were graded according to the criteria established [26, 27]. Briefly, embryo grading I: Even, supernatant was measured at 517 nm. DPPH radical scavenging activity was calculated as the following percentage: \([(R_{\text{DPPH}}} - R_s)/R_{\text{DPPH}}] \times 100 \) (\(R_{\text{DPPH}} \) = result of DPPH alone and \(R_s \) = result of DPPH in the presence of different FF sample).

Figure 1. The control chart (3 sigma) of lower cut-off level of DPPH radical scavenging ability in follicular fluid from infertile women undergoing IVF. UCL, upper control limit; LCL, lower control limit.

Figure 2. The control chart (3 sigma) of lower cut-off level of reducing power in follicular fluid from infertile women undergoing IVF. UCL, upper control limit; LCL, lower control limit.
Lower limit of antioxidant activity in follicular fluid

Table 2. Identification of the relationship between lower cut-off level in antioxidant activity of follicular fluid from women undergoing IVF and embryo quality

<table>
<thead>
<tr>
<th>Cut-off level</th>
<th>Grades I and II embryo formation (%)</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPPH radical scavenging ability</td>
<td>> 18.3% (382)</td>
<td>77.7% (297/382)</td>
</tr>
<tr>
<td></td>
<td>< 18.3% (25)</td>
<td>12.0% (3/25)</td>
</tr>
<tr>
<td>Reducing Power</td>
<td>> 0.257 (396)</td>
<td>75.0% (297/396)</td>
</tr>
<tr>
<td></td>
<td>< 0.257 (11)</td>
<td>27.3% (3/11)</td>
</tr>
</tbody>
</table>

Then, the lower limit of antioxidant activity in FF was investigated by using control chart. As shown in **Figures 1 and 2**, all the FF samples showed different DPPH radical scavenging capability and reducing power (mean, 35.8 ± 6.8% and 0.428 ± 0.067, respectively). The LCL of DPPH radical scavenging percentage and reducing power were 18.3% and 0.257, respectively. It means FF may adversely affect the embryo development when the DPPH radical scavenging ability or reducing power below the LCL. This estimated LCL was further validated in FF samples of embryo grading I-IV.

As shown in **Table 2**, in DPPH assays, percentage of grades I and II embryo formation were detected to be significant higher (77.7%) in patients with DPPH radical scavenging activity > 18.3% compared with those of < 18.3% (P < 0.001). Similar results were obtained in reducing power assay. In the patients with reducing power > 0.257, the percentage of grades I and II embryo formation were 75.0%, which significant higher than that of < 0.257 (P < 0.001).

Discussion

In this work we investigated, for the first time, the lower limit of antioxidant activity of FF from patients undergoing an IVF. Various researches showed that antioxidant activity of FF was positive ly correlated with embryo quality. Paszkowski and Clarke [31] and Yang et al. [32] found that decreased antioxidant activity was associated with impaired embryo development. Hosseni et al. [33] shown that for vitrified embryos, the best effect was found when antioxidant was added from day 1 of in vitro culture in continuation with post-warming culture period. Day 1-8 supplementation significantly increased the rates of cleavage, day 7 and day 8 blastocyst production. Jana et al. [9] investigated the antioxidant capacity of 803 FF samples from 128 infertile women. They found that significantly decreased total antioxidant capacity correlate with poor oocyte and embryo quality. However, conflicts with the results of a study by Fujimoto et al. [12] in which no significant correlations between antioxidant activities of FF from 39 women undergoing IVF and embryo quality. In our study, we demonstrated a positive correlation between antioxidant activities of FF and embryo quality (Table 1). Our results also conflict with the findings of Attaran et al. [21], who obtained a positive correlation between FF reactive oxygen species (ROS) levels and embryo quality. The reasons for this discrepancy were also not clear. However, we do deem that a particular threshold of antioxidant activity in FF may be required for conception in IVF, just like the opinion of Wiener-Megnazi et al. [18]. Therefore, the goal of the current study was to describe the lower limit below which embryo development is not favorable.

In this work we determined the antioxidant activity of FF from patients undergoing an IVF by DPPH radical scavenging assay and reducing power assay. To calculate antioxidant efficiency in vitro, several methods were used to measure a radical scavenging activity of sample against free radicals: superoxide anion radical (O₂⁻), hydroxyl radical (OH) or peroxyl radical (ROO) [34, 35]. Among the several methods, a rapid, simple and inexpensive method based on a free DPPH radical scavenging effect was often used to quantify antioxidants in complex...
Lower limit of antioxidant activity in follicular fluid

biological systems in recent years [36]. DPPH was deep violet in color and characterized by an absorption band in ethanol solution at about 517 nm. When a solution of DPPH was mixed with antioxidants, there was a bleaching of purple-colored in solution. The decreasing absorbance levels indicated increasing antioxidant activity of FF. The reducing power assay was another important determination of the antioxidant activities of samples. The color change was investigated by monitoring the increase in absorbance at 700 nm in the presence of antioxidants [37]. Increase in absorbance indicates an increase in the reducing power of the FF samples. In our study, the FF showed a wide range in activity of scavenging DPPH radical (13.54%-48.07%) and reducing power (0.235-0.548). Our results also showed that stronger antioxidant capacity in FF indicated better embryos grade, which was similar with previous reports [9, 31-33]. This phenomenon also occurred in animal embryos. There were some reports revealed antioxidant may promote the in vitro development of embryos from cows, pigs and other livestock [38-40]. In addition, FF had its highly complex and integrated antioxidant systems. First of all, FF had evolved a variety of interrelated enzymatic antioxidant mechanisms which enable them to cope with oxidative environments [13]. Besides enzymatic systems, the thiol tripeptide glutathione (GSH) was considered to be pivotal in protecting cells from ROS-induced oxidative damage [15]. FF was also protected from oxidative damage by various non-enzymatic dietary antioxidants, including vitamins and polyphenols [6, 41].

Conclusion

In this study, our results showed the lower limit of antioxidant activity of FF below which embryo development is not favorable (Figures 1 and 2). These results were in good agreement with published reports which obtained a direct relationship between decreased antioxidant activity and poor embryo quality. This cut off value of antioxidant activity of FF is expected to assist embryologists and clinicians in predicting development of embryo from infertile patients undergoing IVF. Furthermore, the antioxidant activity of FF needs to be better evaluated in our future studies on larger series. And it was also needed to better understand the mechanism of antioxidant activity in FF responsible for their effects on the embryo quality.

Acknowledgements

The authors thank all the doctors, nurses, and embryologists in the Reproductive Medicine Center of Tongji Hospital for their help in collecting sample. This work was supported by the Youth Science Fund Project of the National Natural Science Foundation of China (grant no. 81401054) and the Young Teachers Foundation of Huazhong University of Science and Technology (grant no. 2014QN096).

Disclosure of conflict of interest

None.

Address correspondence to: Jihui Ai and Lei Jin, Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, People’s Republic of China. E-mail: jiehui.ai@gmail.com (JHA); jinleirepro@yahoo.com (LJ)

References

[6] Palhares Junior MB, Romão GS, Da Broi MG, Martins WdP and Jordão Junior AA. Serum and follicular oxidative stress biomarkers levels

Lower limit of antioxidant activity in follicular fluid

