Original Article
Prognostic role of C-reactive protein in breast cancer: an updated systematic review and meta-analysis

Lanwei Guo, Shuzheng Liu, Shaokai Zhang, Qiong Chen, Meng Zhang, Peiliang Quan, Xibin Sun

Department of Cancer Epidemiology, Henan Office for Cancer Control and Research, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China

Received March 4, 2016; Accepted August 2, 2016; Epub September 15, 2016; Published September 30, 2016

Abstract: The C-reactive protein (CRP), an inflammatory biomarker, has been identified to be related to progression of breast cancer. However, the results remain controversial. A meta-analysis of epidemiologic studies was therefore conducted to address this issue. Data were collected from studies comparing overall, cancer-specific, and disease-free survival (OS, CSS, and DFS) in patients with per natural log unit change in CRP. Study-specific risk estimates were pooled using a random-effects model. Sixteen studies involving a total of 15,545 breast cancer cases were included in this meta-analysis. The pooled results showed that per natural log unit change in CRP was significantly associated with poor OS (HR = 1.28, 95% CI = 1.13-1.44) and DFS (HR = 1.18, 95% CI = 1.04-1.34). For CSS, the pooled HR was 1.38 (95% CI = 1.15-1.66), which could strongly predict poorer survival in breast cancer patients. Similar results were also observed in the stratified analyses by number of patients, treatment, max follow-up and CRP marker. The meta-analysis indicated that elevated CRP levels has a critical prognostic value in patients with breast cancer as an inflammation biomarker.

Keywords: C-reactive protein, breast cancer, prognosis, meta-analysis

Introduction

Breast cancer is the most frequently diagnosed cancer among women and most common cancer-related death worldwide. According to data reported in 2012, about 1.67 million women were diagnosed with breast cancer and it was the most common cause of cancer-related death (522,000 deaths in 2012) [1]. And the number of breast cancer deaths will have increased to 846,587 by the year 2035 [1]. Multidisciplinary treatment strategies based on surgery, radiotherapy and chemotherapy have provided significant improvement in outcome of breast cancer patients. The tumor-node-metastasis (TNM) staging system and tumor markers, such as estrogen (ER) and progesterone (PR) receptors, and human epidermal growth factor receptor 2 (HER2), have made great contributions to the selection of treatment strategies [2]. However, approximately one third of patients with early stage breast cancer develop recurrence after operation or other additional therapies. In contrast, a similar proportion of node-positive patients remain free of distant metastases throughout the life [3]. Therefore, it is important for clinicians to find a simple and effective biomarker to provide advice on the selection of clinical strategies.

Notably, elevated levels of C-reactive protein (CRP), a systemic marker of chronic inflammation, have been associated with increased incidence as well as worse outcome in numerous types of cancer, such as gastro-oesophageal cancer, non-small cell lung cancer and prostate cancer [4-8]. However, longitudinal studies in women diagnosed with breast cancer have reported conflicting results in relation to inflammation and prognosis, with some studies showing an association between elevated CRP and poor prognosis [9-11] and others showing no relationship [12, 13].

During the last decade, several epidemiologic studies have evaluated the associations between CRP and breast cancer survival. A meta-analysis [14] published in 2011 found that higher CRP was statistically significantly associated with breast cancer overall survival (OS:...
hazard ratio \([HR] = 1.62, 95\% \) confidence interval \([CI]: 1.20-2.18 \), with a significant heterogeneity. However, most \(HRs \) extracted were calculated between the highest CRP concentration and the lowest, which means a big difference in CRP concentration and cut-off values among included studies. Besides, this estimate was based on only 4,502 breast cancer cases and lack of subgroup analysis. Thereafter, several epidemiologic studies with large sample sizes or long-term follow-up have been performed regarding CRP and breast cancer survival. Therefore, this meta-analysis is conducted to further clarify the association between a natural log unit increase in CRP levels and overall, cancer-specific, and disease-free survival (OS, CSS, and DFS) in breast cancer patients.

Material and methods

Literature search strategy

A systematic search up to 30 November 2015 was conducted in MEDLINE (via PubMed) and Excerpta Medica database (EMBASE) to identify relevant articles. Search terms included “C-reactive protein OR C reactive protein OR CRP”, “breast cancer” combined with “prognosis OR prognostic OR survival”. Additional relevant references cited in retrieved articles were also evaluated.

Inclusion and exclusion criteria

All papers were reviewed by two authors (S.Z. and Q.C.) independently. Uncertainties and discrepancies were resolved by consensus after discussing with a senior researcher (Q.P.). All studies included in the final meta-analysis satisfied the following criteria: (a) patients were pathologically diagnosed as female breast cancer; (b) the serum CRP level was measured before treatment; (c) breast cancer survival (OS, CSS or DFS) as the outcome of interest; (d) reported \(HRs \) estimates with their corresponding 95\% \(CI \) (or sufficient data to calculate of these effect measure), and (e) English articles. If the study was reported in duplication, the one published earlier or provided more detailed information was included. Review articles and editorials were included if they contained original data. Abstracts were excluded.

Quality assessment

According to a critical review checklist of the Dutch Cochrane Centre proposed by MOOSE, we strictly assessed the quality of all the studies included [15]. (i) clear definition of study population and origin of country; (ii) clear definition of study design; (iii) clear definition of outcome assessment, OS, CSS or DFS; (iv) clear definition of cut-off for CRP, and (v) sufficient period of follow-up. Otherwise, we would exclude the studies in order to ensure the quality of the meta-analysis.

Data extraction

Two of the authors (S.L. and S.Z.) performed the data extraction from each article and discrepancies were resolved by consensus. For studies meeting our inclusion criteria, a standardized data extraction form was used to extract the following data: the first author’s name, year of publication, country of origin, study design, period of enrollment, the length of follow-up, characteristics of the studied population (sample size, age, stage of disease and treatment method), CRP measurement methods, and \(HR \) estimates (for OS, CSS or DFS) with corresponding 95\% \(CIs \) for CRP as a continuous variable or at least 3 categories of CRP levels. Multivariate Cox proportional hazards regression analysis was used in the present analysis. When data for \(HR \) was not available, we extracted the total numbers of observed deaths and the numbers of patients in each group to calculate \(HR \) [16]. Data were extracted by Engauge Digitizer version 4.1 (http://digitizer.sourceforge.net/) from the graphical survival plots when data were only available as Kaplan-Meier curves [17], then the estimation of the \(HR \) was performed by the described method [16].

Statistical analysis

The \(HR \) per natural log unit change in CRP with 95\% \(CI \) was used to compute the pooled \(HR \) of elevated CRP levels and the OS, CSS or DFS in breast cancer patients. A fix-effect or random-effect model was used to pool the data, based on the Mantel-Haenszel method [18] and the DerSimonian and Laird method [19], respectively. These two models provide similar results when between-studies heterogeneity is absent; otherwise, random-effect model is more appropriate. Several studies did not report a risk estimate for one unit change in \(\ln (CRP) \). For these studies, we used the method proposed by Orsini [20] and Greenland [21] to estimate the \(\ln (HR) \) for one unit increase in \(\ln (CRP) \).
Cochrane Q test ($P < 0.10$) indicated a high level of statistical heterogeneity and I^2 (values of 25%, 50% and 75% corresponding to low, moderate and high degrees of heterogeneity, respectively) was used to assess the heterogeneity between eligible studies, which test total variation across studies that was attributable to heterogeneity rather than to chance [22]. Subgroup analyses for one unit increase in ln (CRP) and the OS, CSS or DFS in breast cancer patients were subsequently carried out according to the study type, geographical region, number of patients, treatment, max follow-up time, CRP markers, ER or PR status, regression method and source of HR. Sensitivity analysis was also conducted to assess the influence of each individual study on the strength and stability of the meta-analytic results. Each time, one study in the meta-analysis was excluded to show that study’s impact on the combined effect size. Funnel plot and Begg adjusted rank correlation test for funnel plot asymmetry were performed to test any existing publication bias.

All statistical analyses were performed using STATA version 12 for Windows (StataCorp LP, College Station, TX, USA). A two-tailed $P < 0.05$ was considered statistically significant.

Results

Literature search

As shown in Figure 1, the search strategy generated 134 citations, of which 43 were considered of potential value after screening of titles and abstracts and the full text was retrieved for detailed evaluation. Twenty seven of these 43 articles were subsequently excluded from the meta-analysis for various reasons, including 3 were reviews, 1 was animal study, 19 that did not provide HR or datas to calculate it, 2 were double use of database and 2 were cancer risk study. So, 16 studies were eligible and included in this systematic review and meta-analysis [9-13, 23-33].

Characteristics of the selected studies

Individual characteristics of the included 16 studies are summarised in Table 1. They were published from 1982 to 2015 and involved a total of 15,545 breast cancer cases. Among these studies, 9 studies were conducted in Europe [10-13, 23, 25, 27, 30, 31], 4 in North America [9, 28, 29, 32], and 3 in Asia [24, 26, 33]. Of all the selected studies, 11 presented HRs [9, 10, 12, 25-31, 33], while in the other 5 studies [11, 13, 23, 24, 32], HRs were absent, and we needed to ask authors or calculate the HRs from the available data or survival curves. Three studies [11, 26, 27] did not give accurate data for follow-up. The median follow-up period of all studies ranged from 0 to 204 months.

Results of the meta-analysis

Overall survival: Thirteen studies reported the relationship between serum CRP levels and OS in breast cancer patients. Among the studies included, one showed an insignificant negative association between one unit change in ln (CRP) and OS in breast cancer patients, and the other twelve showed positive associations, six
Table 1. Characteristics of the included studies

<table>
<thead>
<tr>
<th>First author</th>
<th>Year</th>
<th>Year of recruitment</th>
<th>Country</th>
<th>No. of Patients</th>
<th>Age, y</th>
<th>Disease</th>
<th>Markers</th>
<th>Survival analysis</th>
<th>Hazard ratio</th>
<th>Median follow-up period (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heys SD</td>
<td>1998</td>
<td>NA</td>
<td>UK</td>
<td>77</td>
<td>47 (30-73)</td>
<td>Locally advanced BC</td>
<td>CRP</td>
<td>OS</td>
<td>Survival curve</td>
<td>31 (24-38)</td>
</tr>
<tr>
<td>Ravishankaran P</td>
<td>2011</td>
<td>NA</td>
<td>India</td>
<td>59</td>
<td>59.11 (36-85)</td>
<td>BC</td>
<td>CRP</td>
<td>OS</td>
<td>Data extrapolated</td>
<td>36</td>
</tr>
<tr>
<td>Pierce BL</td>
<td>2009</td>
<td>1995-1999</td>
<td>USA</td>
<td>734</td>
<td>57.5±10.4</td>
<td>BC</td>
<td>Hs-CRP</td>
<td>OS, DFS</td>
<td>Report</td>
<td>83</td>
</tr>
<tr>
<td>Al Murri AM</td>
<td>2011</td>
<td>2002-2009</td>
<td>Denmark</td>
<td>2910</td>
<td>48-74</td>
<td>BC</td>
<td>Hs-CRP</td>
<td>OS, CSS, DFS</td>
<td>Report</td>
<td>36 (0-84)</td>
</tr>
<tr>
<td>Villaseñor A</td>
<td>2014</td>
<td>1995-2000</td>
<td>USA</td>
<td>2919</td>
<td>53</td>
<td>BC</td>
<td>Hs-CRP</td>
<td>OS, CSS, DFS</td>
<td>Report</td>
<td>87.6</td>
</tr>
<tr>
<td>Tibau A</td>
<td>2013</td>
<td>1989-1996</td>
<td>Canada</td>
<td>404</td>
<td>50.5</td>
<td>BC</td>
<td>Hs-CRP</td>
<td>OS, DFS</td>
<td>Report</td>
<td>145.2 (2.4-204)</td>
</tr>
<tr>
<td>Albuquerque KV</td>
<td>1995</td>
<td>NA</td>
<td>UK</td>
<td>85</td>
<td>60.52±12.22</td>
<td>Metastatic BC</td>
<td>CRP</td>
<td>OS</td>
<td>Survival curve</td>
<td>NA</td>
</tr>
<tr>
<td>Mortensen RF</td>
<td>1982</td>
<td>NA</td>
<td>USA</td>
<td>297</td>
<td>NA</td>
<td>BC</td>
<td>CRP</td>
<td>DFS</td>
<td>Survival curve</td>
<td>3-48</td>
</tr>
<tr>
<td>Pasanisi P</td>
<td>2008</td>
<td>NA</td>
<td>Italy</td>
<td>96</td>
<td>56.8±5.6</td>
<td>BC</td>
<td>CRP</td>
<td>OS</td>
<td>Author provided</td>
<td>66</td>
</tr>
<tr>
<td>Zhang GJ</td>
<td>1999</td>
<td>NA</td>
<td>Japan</td>
<td>40</td>
<td>54 (32-74)</td>
<td>Metastatic BC</td>
<td>CRP</td>
<td>CSS</td>
<td>Report</td>
<td>32 (3-110)</td>
</tr>
</tbody>
</table>

Abbreviations: BC, breast cancer; CRP, C-reactive protein; Hs-CRP, High-sensitivity C-reactive protein; OS, overall survival; CSS, cancer-specific survival; DFS, disease-free survival; NA, not available.
CRP and breast cancer prognosis

A OS

<table>
<thead>
<tr>
<th>Study</th>
<th>HR (95% CI)</th>
<th>%</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heys SD (1998)</td>
<td>1.53 (0.79, 2.94)</td>
<td>2.78</td>
<td>77</td>
</tr>
<tr>
<td>Ravishankaran P (2011)</td>
<td>1.09 (0.96, 1.24)</td>
<td>13.81</td>
<td>59</td>
</tr>
<tr>
<td>Pierce BL (2009)</td>
<td>1.39 (1.14, 1.69)</td>
<td>11.38</td>
<td>734</td>
</tr>
<tr>
<td>Allin KH (2011)</td>
<td>1.65 (1.35, 2.01)</td>
<td>11.30</td>
<td>2910</td>
</tr>
<tr>
<td>Petekkaya I (2014)</td>
<td>0.86 (0.22, 3.38)</td>
<td>0.74</td>
<td>675</td>
</tr>
<tr>
<td>Villaseñor A (2014)</td>
<td>1.19 (1.06, 1.34)</td>
<td>14.16</td>
<td>2919</td>
</tr>
<tr>
<td>Tibau A (2013)</td>
<td>1.17 (0.76, 1.81)</td>
<td>5.23</td>
<td>404</td>
</tr>
<tr>
<td>Wulaningsih W (2015)</td>
<td>1.19 (1.04, 1.36)</td>
<td>13.00</td>
<td>6600</td>
</tr>
<tr>
<td>Albuquerque KV (1995)</td>
<td>1.62 (0.84, 3.24)</td>
<td>2.66</td>
<td>85</td>
</tr>
<tr>
<td>Sickling I (2014)</td>
<td>1.03 (1.00, 1.06)</td>
<td>16.21</td>
<td>148</td>
</tr>
<tr>
<td>Pasanisi P (2008)</td>
<td>1.57 (0.57, 4.36)</td>
<td>1.29</td>
<td>96</td>
</tr>
<tr>
<td>Al Muni AM (2007)</td>
<td>1.67 (0.51, 5.26)</td>
<td>1.00</td>
<td>300</td>
</tr>
<tr>
<td>McMillan DC (2001)</td>
<td>2.15 (1.44, 3.20)</td>
<td>5.84</td>
<td>99</td>
</tr>
<tr>
<td>Overall (I-squared = 77.3%, p = 0.000)</td>
<td>1.28 (1.13, 1.44)</td>
<td>100.00</td>
<td>15112</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis

B CSS

<table>
<thead>
<tr>
<th>Study</th>
<th>HR (95% CI)</th>
<th>%</th>
<th>Number of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allin KH (2011)</td>
<td>1.46 (1.11, 1.91)</td>
<td>20.47</td>
<td>2872</td>
</tr>
<tr>
<td>Al Muni AM (2006)</td>
<td>2.50 (1.40, 4.48)</td>
<td>7.92</td>
<td>96</td>
</tr>
<tr>
<td>Villaseñor A (2014)</td>
<td>1.16 (1.02, 1.32)</td>
<td>31.08</td>
<td>2919</td>
</tr>
<tr>
<td>Wulaningsih W (2015)</td>
<td>1.16 (0.95, 1.41)</td>
<td>25.83</td>
<td>6906</td>
</tr>
<tr>
<td>Zhang GJ (1999)</td>
<td>1.27 (0.30, 6.25)</td>
<td>1.43</td>
<td>40</td>
</tr>
<tr>
<td>Al Muni AM (2007)</td>
<td>1.61 (0.37, 6.67)</td>
<td>1.57</td>
<td>300</td>
</tr>
<tr>
<td>McMillan DC (2001)</td>
<td>1.92 (1.23, 3.00)</td>
<td>11.70</td>
<td>99</td>
</tr>
<tr>
<td>Overall (I-squared = 51.0%, p = 0.057)</td>
<td>1.38 (1.15, 1.66)</td>
<td>100.00</td>
<td>12932</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
CRP and breast cancer prognosis

Figure 2. Forest plot for the association between per log-transformed CRP concentration and female breast cancer prognosis. Survival data are reported as overall survival (A), cancer-specific survival (B), and disease-free survival (C).

Cancer-specific survival: Seven studies reported the relationship between serum CRP level and CSS in breast cancer patients. All the studies included showed positive associations between one unit change in ln (CRP) and CSS in breast cancer patients, four of which showed statistical significance. The heterogeneity test indicated there was high degree of heterogeneity among included studies (Q-test \(P_{\text{heterogeneity}} = 0.000, I^2 = 77.3\%\)), thus a random effects model was employed to obtain the pooled \(HR \). The statistical result showed that per natural log unit change in CRP was significantly correlated with poor CSS (\(HR = 1.38, 95\% \text{ CI: 1.15-1.66} \)) (Figure 2B).

Disease-free survival: Nine studies reported the relationship between serum CRP levels and DFS in breast cancer patients. Among the studies included, one showed an insignificant negative association between one unit change in ln (CRP) and CSS in breast cancer patients, and the other eight showed positive associations, five of which showed statistical significance. The heterogeneity test indicated there was high degree of heterogeneity among included studies (Q-test \(P_{\text{heterogeneity}} = 0.000, I^2 = 76.1\%\)), thus a random effects model was employed to obtain the pooled \(HR \). The statistical result showed that per natural log unit change in CRP was significantly correlated with poor DFS (\(HR = 1.18, 95\% \text{ CI: 1.04-1.34} \)) (Figure 2C).

Subgroup analyses

Table 2 presents detailed results of subgroup analyses. The associations of ln (CRP) with poor OS in breast cancer patients did not differ by number of patients, treatment, max follow-up, CRP markers and ER status. Elevated CRP levels were significantly associated with poor
OS in breast cancer patients in Europe (HR = 1.41, 95% CI: 1.14-1.75) and North America (HR = 1.24, 95% CI: 1.12-1.36), but not in Asia (HR = 1.09, 95% CI: 0.96-1.24). When cancer cases stratified by ER and PR status, the association was significantly for ER+ group (HR = 1.40, 95% CI: 1.13-1.72), PR+ group (HR = 1.69, 95% CI: 1.08-2.64) and ER+/PR+ group (HR = 1.43, 95% CI: 1.11-1.83), but not for ER-, PR- and ER-/PR- group.

The associations of ln (CRP) with poor CSS in breast cancer patients did not differ by number of patients, treatment, max follow-up and CRP markers.

The associations of ln (CRP) with poor DFS in breast cancer patients did not differ by geographic region and treatment, however, the association disappeared when stratified by number of patients and ER/PR status. When
cancer cases stratified by max follow-up period, the association was significantly for “≥5 years” group (HR = 1.17, 95% CI: 1.00-1.36), but not for “< 5 years” group (HR = 1.27, 95% CI: 0.94-1.72). Elevated CRP levels were significantly associated with poor DFS in breast cancer patients for Hs-marker (HR = 1.24, 95% CI: 1.06-1.45), but not for traditional CRP (HR = 1.17, 95% CI: 0.90-1.53).

In short, the estimated heterogeneity (OS, CSS and DFS) for studies included decreased to some degree but did not obliterate.

Influence analysis of individual studies

To address the potential bias due to the quality of the included studies, we performed the sensitivity analysis by calculating pooled HRs again when omitting one study at a time. Figure 3A-C showed the results of sensitivity analysis for OS, CSS and DFS respectively. The pooled HRs per natural log unit change in CRP for OS in breast cancer patients ranged from 1.22 (95% CI: 1.09-1.36) to 1.32 (95% CI: 1.15-1.53). The pooled HRs per natural log unit change in CRP for CSS in breast cancer patients ranged from 1.27 (95% CI: 1.11-1.45) to 1.52 (95% CI: 1.18-1.95). The pooled HRs per natural log unit change in CRP for DFS in breast cancer patients ranged from 1.11 (95% CI: 1.00-1.24) to 1.24 (95% CI: 1.05-1.45). The meta-analysis result of the pooled

Figure 3. Influence analyses for omitting individual study on the summary HR. Survival data are reported as overall survival (A), cancerspecific survival (B), and disease-free survival (C).
CRP and breast cancer prognosis

Figure 4. Funnel plots for publication bias of overall survival (A), cancer-specific survival (B), and disease-free survival (C).

HRs per natural log unit change in CRP for OS, CSS and DFS in breast cancer patients were not significantly affected by omission of any of the individual studies analysed, which indicated that each single study didn’t influence the stability of pooled HR estimate.

Publication bias

There was no evidence of publication bias as demonstrated by the non-significant P values of Begg’s test for OS (0.625), CSS (0.293) and DFS (0.677), and the near-symmetric funnel plot (Figure 4A-C).

Discussion

This meta-analysis indicated that a natural log unit increase in CRP levels could predict worse survival in patients with breast cancer. The data showed that CRP was associated with OS, CSS, and DFS. Elevated level of CRP could be a strong prognostic factor for CSS. Sensitivity analysis further confirmed the robustness of these results.

Our summary estimate of CRP and breast cancer survival were consistent with a previous meta-analysis study [14]. This meta-analysis which included 10 studies with only 4,502 cases showed that, compared with the lowest con-
CRP and breast cancer prognosis

centration of CRP level, the highest group was significantly associated with poor OS (HR = 1.62, 95% CI: 1.20-2.18), CSS (HR = 2.08, 95% CI: 1.48-2.94) and DFS (HR = 1.81, 95% CI: 1.44-2.26). However, the results were doubtful with a big difference in CRP concentration and cut-off values among included studies. In contrast to that study, our meta-analysis involved a total of 15,545 breast cancer cases and used the method proposed by Orsini [20] and Greenland [21] to estimate the ln(HR) for one unit increase in ln (CRP), which decreased the influence caused by CRP concentration and cut-off values.

Results from subgroup analyses showed that geographic region, number of patients, treatment and CRP markers might be possible sources of heterogeneity. Despite suffering the limitations of observational nature, several findings from subgroup-analysis deserved to be notable. Per natural log unit change in CRP was not significantly associated with poor OS in Asia, which means regional differences may exist between the elevated levels of CRP and OS in breast cancer patients. However, the pooled HR from Asia were only from two countries, India and Turkey. As known to all, China has the largest number of breast cancer patients in Asia [34]. So we should be cautious with the representativeness of these included studies. Results from subgroup analyses stratified by source of ER/PR status showed that the elevated levels of CRP was significantly associated with poor OS in PR+ or ER+/PR+ breast cancer patients, not in PR- or ER-/PR- breast cancer patients. However, the results were only from two studies. So, more studies are therefore needed to confirm the function of ER/PR status between serum CRP and OS, CSS or DFS in the future. Besides, Hs-CRP, as an inflammatory biomarker, is superior to common CRP in predicting risk of OS, CSS and DFS in breast cancer patients.

The present study has several strengths. First, it included a large sample size (15,545 breast cancer cases). Second, we applied a rigorous inclusion/exclusion criterion, fully outcomes of interest (OS, CSS, and DFS) and advanced meta-analysis of HR for survival. Moreover, more comparable dose-response relationship were created for each study, and subgroup analyses stratified by the study type, geographical region, number of patients, treatment, max follow-up time, CRP markers, ER or PR status, regression method and source of HR were conducted. Thus, the effect of potential confounders was minimized. In addition, no publication bias were observed in our analyses, combined with the results of sensitivity analysis, indicating that our results are robust.

However, the present meta-analysis has several limitations. First, the methods for detecting serum CRP varied from studies, mainly including turbidimetric immunoassay, latex photometric immunoassay, and enzyme linked immunosorbent assay (ELISA). Second, significant heterogeneity was observed. To address this issue, the random-effects model meta-analysis was reported to combine data whenever significant heterogeneity was noted. We used appropriate well-motivated inclusion criteria to maximize homogeneity, and performed sensitivity and subgroup analyses to investigate potential sources of heterogeneity. Finally, the CRP is usually regarded as a prognostic marker in several diseases which are related to survival, such as cardiovascular diseases [35]. Thus, we cannot consider CRP as a ‘predictor’ for survival unless the involved patients do not have other severe diseases related to CRP. Because the presence or absence of concomitant severe diseases was not mentioned in most of selected studies, we should be careful while considering CRP as a predictor of survival in cancer patients.

In conclusion, CRP as a role of representative cost-effective and non-invasive biomarker for systemic inflammatory response has a significant impact in predicting outcomes of breast cancer. The findings of this meta-analysis indicated that elevated CRP levels was associated with poor breast cancer survival, and CRP was a strong predictor for all three survival outcomes (OS, CSS and DFS), especially for CSS. Our meta-analysis has provided a better understanding of the association between the presence of systemic inflammatory response and cancer progression, and novel anti-inflammatory therapeutics that target the tumor microenvironment might also be considered in the future.

Acknowledgements

This work was supported in part by the National Natural Science Fund from the National Natural Science Foundation of China (grant no. 81402740).
Disclosure of conflict of interest

None.

Authors’ contribution

All authors have made substantial contributions to the conception and design of the study. L.G. contributed to protocol design, search, data extraction, quality assessment, statistical analysis, and writing the report. S.L. and S.Z contributed to protocol design, search, data extraction, and writing the report. Q.C., M.Z. and P.Q. contributed to quality assessment, statistical analysis, and revision of the report. X.S. contributed to interpretation of data and revision of the report. All authors have seen and approved the final version.

Address correspondence to: Dr. Xibin Sun, Department of Cancer Epidemiology, Henan Office for Cancer Control and Research, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Dongming Road No. 127, PO Box 0061, Zhengzhou 450008, China. Tel: +86-371-6558-7361; Fax: +86-371-6558-7361; E-mail: xbsun21@sina.com

References

CRP and breast cancer prognosis

