Original Article
Association of pro-inflammatory cytokines gene polymorphisms with risk of bladder cancer in the han Chinese population

Linfeng Lu, Lingfeng Wu, Hao Chen, Wei Zhu, Xiaoming Wu, Yansong Hou, Yanqin Gu, Hua Wang, Yi He
Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
Received March 10, 2016; Accepted July 6, 2016; Epub August 15, 2016; Published August 30, 2016

Abstract: Epidemiologic studies have shown smoking increases the production of numerous pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-12 (IL-12) and decreases the levels of anti-inflammatory cytokines such as Interleukin-10 (IL-10). Up to now, numerous studies of genetic epidemiology have assessed the association of pro-inflammation cytokines gene polymorphisms and risk of cancer in different populations, but conflicting results were obtained due to the heterogeneity of the genetic background among populations. Here, we recruited 248 bladder cancer patients, and 226 matched healthy controls from Zhejiang Province to evaluate the influence of IL-6 rs1800795, IL-12 rs3212227 and TNF-α rs1800629 polymorphism on bladder cancer patients. Single nucleotide polymorphism locus was genotyped using PCR-RFLP. The genotypic and allelic frequency of TNF-α, IL-6 did not show significant difference between asthmatic patients and normal controls. However, people engaged high risk jobs with C allele in IL-6 rs1800795 position were 2-4 times more susceptible to fall ill bladder cancer. Whereas, the GA heterozygous genotype of TNF-α rs1800629 (OR=1.642, 95% CI=0.781-3.641, P=0.034) and combined GA+AA (OR=3.213, 95% CI=2.013-6.412, P=0.026) genotypes among smoker patients showed significant association with an increased susceptibility of bladder cancer. The AC heterozygous genotype of IL-12 rs3212227 (OR=3.312, 95% CI=1.282-5.731, P=0.011) and combined AC+CC (OR=3.502, 95% CI=1.781-5.814, P=0.045) genotypes among smoker patients showed significant association with an increased susceptibility of bladder cancer. Moreover, there was more than 2-fold increased risk of cancer in the carriers of IL-12 heterozygous (OR=3.712, 95% CI=2.401-6.752, P=0.001) and combined AC+CC (OR=3.923, 95% CI=1.852-5.681, P=0.001) genotypes. Specific IL-6 rs1800795, and TNF-α rs1800629 genotype are significantly associated with an increased risk of bladder cancer with smoking habits or working. Furthermore, we first identified IL-12 rs3212227 AC genotype is not associated with an increased risk of bladder cancer with smoking habits or working, but confer genetically susceptibility to bladder cancer in chinese population.

Keywords: IL-6, IL-12, TNF-α, polymorphism, bladder cancer

Introduction

Bladder cancer (BC) is any of several types of cancer arising from the epithelial lining of the urinary bladder. The most common type of bladder cancer recapitulates the normal histology of the urothelium and is known as transitional cell carcinoma or more properly urothelial cell carcinoma [1-3]. Five-year survival rates in the United States are around 77% [1]. BC is the 9th leading cause of cancer with 430,000 new cases and 165,000 deaths occurring in 2012 [4]. Among men, BC is the fourth most common cancer and the eighth most common cause of cancer death. In China, BC is the tenth most common cancer, accounting for 17,365 deaths in 2005, and mortality has steadily increased between 1991 and 2005 [5]. Many epidemiological researches have demonstrated that BC is affected by environmental factors, such as smoking, environmental exposure to chemical carcinogens, age, occupation and several lifestyle factors like obesity, suffering from diabetes mellitus and psychiatry disorders, of which tobacco smoking is the primary risk factor [6]. However, only a few of the exposed individuals develop BC in their lifetime, indicating that genetic factor may also play a crucial role in the pathogenesis of BC. Therefore, a greater understanding on the molecular basis
underlying in BC susceptibility and prognosis is beneficial for prevention, treatment and prognosis.

Cancer is a hyperproliferative disorder involving sustaining proliferative signaling, escaping growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming of energy metabolism, and evading immune destruction. Recently, clinical and epidemiologic studies have demonstrated pro-inflammation can play an important role in tumorigenesis, development, invasion and metastasis [7]. Pro-inflammation, which orchestrates the tumor microenvironment, is involved in tumor initiation, promotion, and progression [8]. In BC, evidences from multiple studies have shown that pro-inflammation cytokines, such as tumor necrosis factor alpha (TNF-α) [9], interleukin 6 (IL-6) [10, 11] and Interleukin-12 (IL-12) [12], are likely to have an important role. IL-6 promoter region was associated with cancer [14]. Meanwhile clinical research has suggested that there is a correlation between the IL-12 SNPs and levels of serum IL-12 with disease severity in cancer patients. Many studies have focused mainly on 3’UTR, -1188 A/C (rs3212227) in the IL-12 gene [15]. Furthermore, several polymorphisms in the promoter region of TNF-α have been also associated with different TNF-α expression levels. Of these, the TNF-α -308 G/A (also referred to as rs1800629) is the best studied. It involves the substitution of a guanine (G) by an adenine (A) and is associated with an increase in TNF-α expression levels [16, 17]. Up to now, numerous studies of genetic epidemiology have assessed the association of pro-inflammation cytokines gene polymorphisms and risk of cancer in different populations, but conflicting results were obtained due to the heterogeneity of the genetic background among populations. Furthermore, this supports the need for replication studies among all ethnic groups.

Taken together the association of pro-inflammation cytokines and cancer, the aim of the present study was to analysis the influence gene polymorphisms of IL-6, IL-12 and TNF-α on the susceptibility to bladder cancer in Chinese population.

Patients and methods

Ethics statement

The Medical Ethics Committee of The First Hospital of Jiaxing Hospital approved this study. Written informed consents conforming to the tenets of the Declaration of Helsinki were obtained from each participant prior to the study.

Participants

A total of 248 histological-confirmed incident bladder cancer specimens, and 226 matched healthy controls were recruited from Department of Urology, The First Hospital of Jiaxing, between January 2013 to January 2015. All subjects are Han Chinese. None of the patients had received chemotherapy or radiation before inclusion in the study. The criteria for the selec-
tion of patients were based on clinical pathological, and histopathological records. Those patients who had previous cancer, previous radiotherapy or chemotherapy, and metastasized cancer from other or unknown origins were excluded. Control subjects were genetically unrelated individuals and those with any personal or family history of bladder cancer or other serious disease were intentionally excluded. Table 1 summarized the baseline characteristics of the patients and control groups.

Genotyping

Genome DNA from whole blood cells of each sample was extracted by using Blood Genomic DNA Miniprep Kit (Axygen, USA) according to the manufacturer’s instructions. DNA samples were stored at -20°C until analysis. Genotyping for the IL-6 -174 G/C, IL-12 -1188 A/C, TNF-α -308 G/A polymorphisms in genomic DNA were performed using the PCR and restriction fragment length polymorphism (RFLP). The genomic region encompassing polymorphisms were amplified using the following primers: IL-6 F: 5’-ACTTTTCCCCCTAGTTGTGTCTTTC-3’, R: 5’-AGAATGAGCCTCAGACATCTCCAGT-3’; IL-12 F: 5’-GGCATTCTCTTCCAGGTTCTG-3’, R: 5’-CCATGGCAACCTGAAGAGCTG-3’; and TNF-α F: 5’-AGGCAATAGGTTTGAGGGCCAT-3’, R: 5’-TCCCTGCTCCGATTCCG-3’. The PCR products were cut into two fragments of 80 and 27 bp in length.

Statistic analysis

Data were statistically described in terms of mean ± standard deviation (SD), or frequencies (number of cases) and percentages as required depending on their distribution. The Hardy-Weinberg equilibrium (HWE) was assessed for each variation to identify the deviation. The differences of the genotypes and alleles of detected genes between patients and normal controls were evaluated by using Pearson Chi-square test. Exact test was used instead when the expected frequency is less than 5. The odds ratio (OR) and 95% confidence intervals (95% CI) were calculated. Unpaired Student’s t test or Mann-Whitney tests were used for two-group comparisons. Statistical analysis of data was performed using the SPSS software package 18.0 (SPSS Inc. USA). P-value less than 0.05 was considered statistically significant.

Results

In this study, 248 asthmatic (108 males and 140 females) and 226 controls (112 males and 114 females) were screened for IL-6 rs1800795, IL-12 rs3212227 and TNF-α rs1800629 polymorphisms using PCR-RFLP methods. The mean age of asthmatic patients was 46.48 years, and mean age of matched controls was 46.58 years. There were no significant differences between two groups with regard to gender and age distribution. Table 1 showed the general characteristics of the studied subjects. Whereas 61.29% of patients were current smokers, cigarette smoking showed significant association with increased risk of bladder cancer compared with healthy individuals (OR=2.47, 95% CI=1.66-3.65, P=0.000031). Moreover, 38.71% of patients were performing high risk jobs (workers in the aluminum, dye, paint, rubber and textile industries and, in gases stations). High risk jobs status has shown significant association with increased risk of bladder cancer (OR=2.8, 95% CI=1.56-3.73, P=0.0000). The incidence of alcohol drinker was also higher in bladder cancer patients (44.35% Vs 25.67%). These epidemiol-
ogy results suggested that smoking, occupation and drinking are the primary risk factor for BC and were consistent with previous studies [18].

Firstly, the frequencies of genotypes and alleles of IL-6 rs1800795, IL-12 rs3212227 and TNF-α rs1800629 were detected on patients and control groups. HWE of rs1800795, rs3212227 and rs1800629 in patients and controls were listed in Table 2, and the results showed allelic distribution of detected SNP were not deviated from HWE in both case and control populations. IL-6 rs1800795 in the study population were as follows: 7.4% CC, 33.5% CG and 59.1% GG for the case study group and 4.9% CC, 30.4% GC, and 64.7% GG for the controls, indicating that the genotypes distributions were similar between the cases and the control groups. Also, genomic analysis did not reveal a difference between bladder cancer patients and healthy controls in allelic frequency at the -174 position for the IL-6 gene promoter. Similarly, the genotypic and allelic frequency of rs1800629 did not show significant difference between asthmatic patients and normal controls. Then, Genotype and allele frequency of rs1800629 were detected in metabolic syndrome patients and normal control in Table 2.

Table 2. Genotype and allele frequency of IL-6 rs1800795, IL-12 rs3212227 and TNF-α rs1800629 and Pearson’s chi-square test in bladder cancer patients and normal controls

<table>
<thead>
<tr>
<th>Genotype/Allele</th>
<th>Patients (n=248)</th>
<th>Controls (n=226)</th>
<th>P-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 rs1800795</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>147</td>
<td>146</td>
<td>0.620</td>
<td>0.905 (0.626-1.320)</td>
</tr>
<tr>
<td>GC</td>
<td>83</td>
<td>69</td>
<td>0.077</td>
<td>0.822 (0.681-1.484)</td>
</tr>
<tr>
<td>CC</td>
<td>18</td>
<td>11</td>
<td>0.122</td>
<td>4.560 (0.556-37.412)</td>
</tr>
<tr>
<td>G</td>
<td>377</td>
<td>361</td>
<td>0.314</td>
<td>0.841 (0.498-1.192)</td>
</tr>
<tr>
<td>C</td>
<td>119</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-12 rs3212227</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>106</td>
<td>81</td>
<td>0.0521</td>
<td>0.805 (0.526-1.220)</td>
</tr>
<tr>
<td>AC</td>
<td>127</td>
<td>140</td>
<td>0.025</td>
<td>1.749 (1.104-2.417)</td>
</tr>
<tr>
<td>CC</td>
<td>15</td>
<td>5</td>
<td>0.0519</td>
<td>0.972 (0.653-1.521)</td>
</tr>
<tr>
<td>A</td>
<td>339</td>
<td>302</td>
<td>0.275</td>
<td>0.571 (0.328-0.981)</td>
</tr>
<tr>
<td>C</td>
<td>157</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α rs1800629</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td>172</td>
<td>169</td>
<td>0.559</td>
<td>0.869 (0.542-1.392)</td>
</tr>
<tr>
<td>GA</td>
<td>68</td>
<td>51</td>
<td>0.921</td>
<td>1.258 (0.787-2.010)</td>
</tr>
<tr>
<td>AA</td>
<td>8</td>
<td>6</td>
<td>0.350</td>
<td>3.358 (0.347-32.543)</td>
</tr>
<tr>
<td>A</td>
<td>412</td>
<td>389</td>
<td>0.356</td>
<td>0.813 (0.524-1.267)</td>
</tr>
</tbody>
</table>

*Chi-square test for deviation from the Hardy-Weinberg equilibrium (a value of P<0.001 was regarded as a deviation from the HWE).

Table 3. Age and sex adjusted ORs (and Cornfield 95% CIs) for the association of proinflammatory cytokines gene polymorphisms among smokers and high risk job patients

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Smoker Risk (152)</th>
<th>P-value</th>
<th>OR (95% CI)</th>
<th>High risk job Risk (96)</th>
<th>P-value</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 rs1800795</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>0.006</td>
<td>2.012 (1.782-2.561)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC</td>
<td>0.041</td>
<td>2.812 (1.612-4.210)</td>
<td>0.031</td>
<td>2.754 (1.731-5.902)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GC+CC</td>
<td>0.012</td>
<td>2.162 (1.452-4.841)</td>
<td>0.028</td>
<td>2.951 (1.631-4.899)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-12 rs3212227</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>0.011</td>
<td>3.312 (1.282-5.731)</td>
<td>0.001</td>
<td>3.712 (2.401-6.752)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC+CC</td>
<td>0.045</td>
<td>3.502 (1.781-5.814)</td>
<td>0.001</td>
<td>3.923 (1.852-5.681)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α rs1800629</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td>0.034</td>
<td>1.642 (0.781-3.621)</td>
<td>0.067</td>
<td>0.784 (0.427-0.989)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GA+AA</td>
<td>0.026</td>
<td>3.213 (2.013-6.412)</td>
<td>0.219</td>
<td>1.214 (0.781-1.971)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The genotypic and allelic frequency of rs-1800629 between cases and health controls did not show significant difference.

Whereas, the frequency of wild (AA) and homozygous mutant (CC) genotype IL-12 rs3212227 genotypes in cases and controls was found more in controls (43% and 5.7% respectively), but that of the heterozygous genotype was higher (60.15%) in cases with bladder cancer. Significant risk of bladder cancer was observed for AC (OR=1.74, 95% CI=1.10-2.41, \(P = 0.025 \)) genotype of IL-12. The genomic analysis did not reveal differences in allelic frequencies of the IL-12 (A/C) gene between bladder cancer patients and healthy controls.

Considering bladder cancer may be originated in the environmental and genetic factors interaction, we further investigate the association of proinflammatory cytokines gene polymorphisms among smokers and high risk job patients with age and sex adjusted in Table 3. Among patients with smoking habits, the association between IL-6 gene polymorphism and incidence of bladder cancer was significant. After adjustment for age and sex, the following results were recorded: CC genotype (OR=2.012, 95% CI=1.782-2.561, \(P = 0.006 \)), GC genotype (OR=2.812, 95% CI=1.612-4.841, \(P = 0.041 \)) and GC+CC (OR=2.162, 95% CI=1.452-4.481, \(P = 0.012 \)). We found that smokers with C allele in the rs1800795 position were higher risk of bladder cancer. Moreover, the bladder cancer patients with GC and GC+CC genotypes at rs1800795 position and performing high risk jobs suggested an increased risk of developing bladder cancer, compared with carriers of the GG genotype who had low risk jobs (OR=2.754, 95% CI=1.731-5.092, \(P = 0.031 \)) and (OR=2.951, 95% CI=1.631-4.899, \(P = 0.028 \)), respectively (Table 2). Therefore, people engaged high risk jobs with C allele in IL-6 rs1800795 position were 2-4 times more susceptible to fall ill bladder cancer. However, there were not significantly association between IL-6 genotypes and different clinical stages and grades bladder cancer patients.

On the other hand, the AC heterozygous genotype of IL-12 rs3212227 (OR=3.312, 95% CI=1.282-5.731, \(P = 0.011 \)) and combined AC+CC (OR=3.502, 95% CI=1.781-5.814, \(P = 0.045 \)) genotypes among smoker patients showed significant association with an increased susceptibility of bladder cancer. Moreover, there was more than 2-fold increased risk of cancer in the carriers of IL-12 heterozygous (OR=3.712, 95% CI=2.401-6.752, \(P = 0.001 \)) and combined AC+CC (OR=3.923, 95% CI=1.852-5.681, \(P = 0.001 \)) genotypes as compared with AA genotype occupied low risk jobs among high risk job patients. However, associations also not were found between IL-12 genotypes and clinical stages and grades of bladder cancer. Whereas, the GA heterozygous genotype of TNF-α rs1800629 (OR=1.642, 95% CI=0.781-3.641, \(P = 0.034 \)) and combined GA+AA (OR=3.213, 95% CI=2.013-6.412, \(P = 0.026 \)) genotypes among smoker patients showed significant association with an increased susceptibility of bladder cancer. However, the similar results were not shown in the high risk job with bladder cancer.

Discussion

The gene single nucleotide polymorphisms (SNP) have been thought to alter expressions or influence certain genes; thus, SNPs could be associated with an altered risk of multiple cancers [19-25]. Up to now, the important role of pro-inflammatory cytokines during tumor development and prognosis are increasingly gaining interest. IL-6 is a pleiotropic inflammatory cytokine, which is regarded as an important tumor-promoting factor in the development and progression of various types of human cancer, including bladder cancer [26]. Furthermore, elevated IL-6 serum levels were reported to be associated with metastasis and poor prognosis of prostate and may favor a T-helper-2 (Th2) pattern of humoral immune response which leads to subsequent chronic inflammation and poor [27-36]. The -174 G/C functional polymorphisms in the IL-6 promoter region was correlated with IL-6 transcription activity and levels of IL-6 expression [37].

IL-12 is an important antitumor cytokine that plays important role in the development and progress of canc. Variation in the DNA sequence lead to altered IL-12 production, and this can alter individual’s susceptibility to cancer. The IL-12 3’UTR A>C polymorphism is a functionally important SNP that alters IL-12 production and it has been a reported potential biomarker for risks of some cancers, such as cervical, colorectal, gastric, breast and several others [38-
Proinflammatory cytokines polymorphisms and bladder cancer

44]. TNF-α gene is located in the class III region of the human major histocompatibility complex (MHC) on chromosome 6p21 [45, 46]. Among the several single nucleotide polymorphisms (SNPs) identified in TNF-α, TNF-α rs1800629 is the most extensively studied. The A allele of this polymorphism can lead to high binding affinity of nuclear factors to the TNF promoter, resulting in a high level of transcription activity and secretion levels of TNF-α. So, it was suggested to have a significant functional effect [47]. Numerous studies have tried to determine whether the polymorphism of pro-inflammatory cytokines SNP influences susceptibility to bladder cancer, but no accordant result was obtained due to the heterogeneity of the genetic background among populations [48-50]. Whether genetic variations of the pro-inflammatory cytokines conferred susceptibility to bladder cancer in Chinese were puzzled. Therefore, we presume that the pro-inflammatory cytokines gene polymorphism may be a predicted factor for the tumorigenesis.

In the present study, our results suggested that the genotypes distributions of IL-6 rs1800795 and TNF-α rs1800629 were almost the similar in the cases and the control groups. Meanwhile, allelic analysis did not reveal discrepancy for the frequency at the -174 position, -308 A/G with IL-6 gene and TNF-α promoter respectively. This result is line with the four met-analysis of pro-inflammatory cytokines gene polymorphism and cancer risk [51-53]. Furthermore, our findings indicated increased frequency of IL-12 rs3212227 AA and CC homozygous genotype among controls but that of the heterozygous AC genotype was higher in cases with bladder cancer; thus, a significant risk of bladder cancer was observed for AC genotype of IL-12 rs3212227, which is consistent with the results of Iranian Population [54]. Moreover, evidence from two meta-analyses of IL-12 gene functional polymorphisms by Chen H and Zhou L stand by our results [15, 55]. Jaiswal PK yet reported an inconstant result, discovering that AC genotype and C allele carrier demonstrated reduced risk of BC [56]; We speculated different ethnicity or sample size may lead to contradictory results.

Bladder Cancer may be as a result of gene-environment interaction. Epidemiologic studies have shown significant associations between bladder cancer and environmental factors such as tobacco smoking and occupational exposures [57]. It has been shown that smoking increases the production of numerous pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, IL-8 GM-CSF and decreases the levels of anti-inflammatory cytokines such as IL-10 [58]. Therefore, we have jointly considered tobacco smoking and high risk jobs as two well-known risk factors for bladder cancer in our study. Interestingly, results have revealed strong associations between specific genotypes and incidence of cancer among smokers rs1800795 CC genotype, in case of the GC genotype and in GC+CC. Moreover, patients with high risk jobs and GC and GC+CC genotypes at rs1800795 have shown increased risk of developing bladder cancer as compared with carriers of the GG genotype and low risk jobs, after adjustment for sex and age. These findings suggested the possible role of gene-environment interaction at the rs1800795 position for IL-6 gene and predisposing of a specific genotype at this region to bladder cancer in exposure to these risk factors.

For the first time, we have also investigated the association of the IL-12 rs3212227 polymorphism in bladder cancer patients with tobacco smoking habits and high risk jobs. Special genotypes of IL-12B showed significant association with an increased risk of bladder cancer in smokers and high risk job. Whereas, the GA heterozygous genotype of TNF-α rs1800629 and combined GA+AA genotypes among smoker patients showed significant association with an increased susceptibility of bladder cancer. However, the similar results were not shown in the high risk job with bladder cancer. TNF-α has many effects relevant to the pathogenesis of asthma, including neutrophil release, epithelial cell barrier permeability, macrophage activation, recruitment of inflammatory infiltrates, effectiveness of the local and systemic inflammatory response, and amplification of the effects of other proinflammatory cytokines [59].

These results may be due to the pro-inflammatory cytokines gene interaction with the environment, and consequently, the functional polymorphisms' role in increasing susceptibility to bladder cancer among individuals with exposure to these risk factors.
Proinflammatory cytokines polymorphisms and bladder cancer

Conclusion

In summary, though no any relationship between IL-6, and TNF-α genotypes or alleles and bladder cancer susceptibility was revealed, specific IL-6 rs1800795, and TNF-α rs1800629 genotype are significantly associated with an increased risk of bladder cancer in the Chinese population with smoking habits or working. Furthermore, we first identified IL-12 rs3212227 AC genotype is not associated with an increased risk of bladder cancer with smoking habits or working, but confer genetically susceptibility to bladder cancer in Chinese population.

Acknowledgements

The authors are grateful for the financial support from the Zhejiang Medical Science and Technology Project (grant no. 2012KYB204), the key subject of Jiaxing Medicine (Urology, grant no. 04-F-18).

Disclosure of conflict of interest

None.

Address correspondences to: Dr. Linfeng Lu, Department of Urology, The First Hospital of Jiaxing, 1882 Zhonghuan Road (South), Jiaxing 314001, Zhejiang, China. E-mail: lulinfengjx@sina.com

References

[18] Scherr DS. Commentary on “common genetic polymorphisms modify the effect of smoking...

Proinflammatory cytokines polymorphisms and bladder cancer

[36] Li W, Li N, Wang R, Li Q and Wu H. Interferon gamma, interleukin-6, and -17a levels were correlated with minimal hepatic encephalopathy in HBV patients. Hepatol Int 2015; 9: 218-223.

[40] Radice E, Bellone G and Miranda V. Enhancement of the Immunostimulatory Functions of Ex Vivo-Generated Dendritic Cells from Early-Stage Colon Cancer Patients by Consecutive Exposure to Low Doses of Sequential-Kinetic-Activated IL-4 and IL-12. A Preliminary Study. Transl Oncol 2015; 8: 327-338.

[41] Bozeman EN, He S, Shafizadeh Y and Selvaraj P. Therapeutic efficacy of PD-L1 blockade in a breast cancer model is enhanced by cellular vaccines expressing B7-1 and glycolipid-anchored IL-12. Hum Vaccin Immunother 2015; 0.

