Original Article
Relationship between the IL-18 gene polymorphisms and Alzheimer’s disease: a meta-analysis

Lian Luo**, Kun Li**, Xiaohang Wang

**Department of Neurology, Xixi Hospital of Hangzhou, Hangzhou, China; **Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China. **Equal contributors.

Received February 6, 2016; Accepted September 24, 2016; Epub November 15, 2016; Published November 30, 2016

Abstract: The aim of this meta-analysis was to evaluate the association between IL-18 gene polymorphisms (-607 C/A and -137 G/C) and Alzheimer’s disease (AD). PubMed, Embase, Cochrane Library, SinoMed, and the China Knowledge Resource Integrated Database were searched to identify eligible studies. Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to evaluate the strength of the association between IL-18 gene polymorphisms and AD. Analysis of pooled data from five studies containing 781 AD patients and 876 controls suggested that the -607 C/A (rs1946518) polymorphism decreases the risk of AD. Similarly, collective analysis of five studies containing 862 AD patients and 713 controls showed that the -137 G/C (rs187238) polymorphism was associated with a decreased risk of AD. Stratification analyses indicated -607 C/A and -137 G/C were both more common in Asians and carriers of apolipoprotein-E ε4 (APOE4). Overall, our data indicate that IL-18 gene polymorphisms may decrease the risk of AD, especially among Asians and those with the APOE4 allele. Due to the limited sample size, larger studies are required to validate the association between IL-18 gene polymorphisms and AD.

Keywords: Interleukin-18, polymorphism, alzheimer’s disease, meta-analysis, SNP

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive formation of amyloid senile plaques, neurofibrillary tangles, and selective neuronal death in the brain [1]. The aetiology of AD remains poorly understood, possibly because multifactorial causes, such as environmental factors and genetic predisposition, have been implicated. However, considerable evidence suggests that the innate immune response and neuroinflammation may play an important role in the pathogenesis of AD [2]. Moreover, inflammation reactions in the brain are a prominent pathological feature of AD [3, 4]. Previous studies indicate that the risk of AD is affected by genetic variation in cytokines, such as interleukin1-alpha (IL1-α), IL1-β, IL6, and tumor necrosis factor (TNF), which are found at higher levels in patients with AD [5, 6]. A large number of polymorphisms in cytokine genes associated with inflammation (proinflammatory cytokines) have been investigated in AD, such as IL-18.

IL-18, a pro-inflammatory member of the IL-1 superfamily, is produced by a variety of cell types in the brain, such as activated microglia and astrocytes [7]. The human IL-18 gene is located on chromosome 11 (11q22.2-q22.3). Two different single nucleotide polymorphisms (SNPs), -607 C/A and -137 G/C, located in the promoter region have been confirmed to affect IL-18 gene activity in previous studies [8, 9]. Several studies have investigated the relationship between the two SNPs and AD [10-15]. However, the results remain controversial, as some studies do not find an association between IL-18 polymorphisms and AD. The inconsistency among different studies may be due to the differences between analyzed populations and small sample sizes, resulting in low statistical power.

Therefore, we conducted a meta-analysis to examine these inconsistent results and clarify the associations between -607 C/A or -137 G/C polymorphisms and AD.
Materials and methods

Literature search

We performed a comprehensive search in PubMed, Embase, Cochrane Library, SinoMed, and the China Knowledge Resource Integrated Database to identify studies through April 1, 2015 examining IL-18 gene polymorphisms and AD. The following search terms were used: “Alzheimer’s disease”, “Alzheimer’s dementia”, “AD”, “IL-18”, “Interleukin 18”, “Interleukin-18”, “IL18”, “SNP”, and “polymorphism”. Two independent investigators conducted the search. No language or other restrictions were placed on the search. We also searched the reference lists of all related studies to identify other initially omitted studies. Any disagreements were resolved by discussion.

Inclusion and exclusion criteria

Inclusion criteria included studies that (1) evaluated the association between IL-18 gene polymorphisms (-607 C/A and -137 G/C) and AD, (2) included human subjects, (3) provided sufficient data to calculate the odds ratios (ORs), 95% confidence intervals (CIs), and P value, and (4) were case-control studies.

Exclusion criteria included (1) duplication of previous publications; (2) review, editorial, or other non-original studies; (3) family-based studies of pedigrees; (4) studies without detailed genotype data; (5) inclusion of subjects with other disorders that may influence the results.

Data extraction

For all eligible studies, the extracted information included the name of the first author, publication year, numbers of cases and controls, country of origin, ethnicity, genotyping method, P-value for Hardy-Weinberg equilibrium (HWE), and IL-18 gene genotype frequency in cases and controls. Data were independently extracted by two authors who agreed on all values; disagreements were resolved by discussion.

Quality assessment

Two reviewers independently evaluated each study’s quality based on the Newcastle-Ottawa Scale (NOS) [16]. The NOS criteria includes three aspects: (1) subject selection: 0-4; (2) comparability of subjects: 0-2; and (3) clinical outcome: 0-3. Total NOS scores ranged from 0 to 9. A score ranging from 5 to 9 is considered to indicate generally high methodological quality, whereas a score ranging from 0 to 4 signifies relatively poor quality [17]. Any disagreements on the NOS score of included studies were addressed through a comprehensive reassessment by the latter authors until reaching a consensus.

Statistical analysis

All statistical analyses were performed using Stata 11.0 software (StataCorp, College Station, TX, USA). Pooled odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to evaluate the strength of the association between the IL-18 gene polymorphisms (-607 C/A and -137 G/C) and AD. The statistical significance of the summary OR was determined by the Z-test. Heterogeneity was evaluated by the Q statistic (significant at P<0.1) and I² statistic (where >50% indicates significant heterogeneity) [18]. A fixed-effects model was used to compare trials of low heterogeneity, whereas a random effect model was selected for comparing trials showing significant heterogeneity. Pooled ORs were calculated for each model: allele contrast, dominant, recessive, homozygous, and heterozygous. We performed sensitivity analyses by omitting each study in turn to explore its effect on heterogeneity and the stability of the
Relationship between *IL-18* gene polymorphisms and Alzheimer’s disease

Table 1. Characteristics of included studies

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Case</th>
<th>Control</th>
<th>Allele</th>
<th>HWE</th>
<th>Genotyping method</th>
<th>QAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1946518 (-607 C/A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moraes_2013</td>
<td>Brazil</td>
<td>Caucasian</td>
<td>39</td>
<td>59</td>
<td>22</td>
<td>121</td>
<td>210</td>
<td>81</td>
</tr>
<tr>
<td>Wang_2012</td>
<td>China</td>
<td>Asian</td>
<td>17</td>
<td>24</td>
<td>10</td>
<td>8</td>
<td>26</td>
<td>17</td>
</tr>
<tr>
<td>Segat_2010</td>
<td>Italy</td>
<td>Caucasian</td>
<td>50</td>
<td>72</td>
<td>43</td>
<td>50</td>
<td>84</td>
<td>31</td>
</tr>
<tr>
<td>Yu_2009</td>
<td>China</td>
<td>Asian</td>
<td>34</td>
<td>62</td>
<td>13</td>
<td>21</td>
<td>64</td>
<td>24</td>
</tr>
<tr>
<td>Bossu_2007</td>
<td>Italy</td>
<td>Caucasian</td>
<td>124</td>
<td>170</td>
<td>42</td>
<td>38</td>
<td>71</td>
<td>30</td>
</tr>
<tr>
<td>rs187238 (-137 G/C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tian_2015</td>
<td>China</td>
<td>Asian</td>
<td>158</td>
<td>40</td>
<td>3</td>
<td>185</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>Wang_2012</td>
<td>China</td>
<td>Asian</td>
<td>35</td>
<td>15</td>
<td>1</td>
<td>22</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Segat_2010</td>
<td>Italy</td>
<td>Caucasian</td>
<td>79</td>
<td>76</td>
<td>10</td>
<td>86</td>
<td>64</td>
<td>15</td>
</tr>
<tr>
<td>Yu_2009</td>
<td>China</td>
<td>Asian</td>
<td>87</td>
<td>21</td>
<td>1</td>
<td>73</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>Bossu_2007</td>
<td>Italy</td>
<td>Caucasian</td>
<td>179</td>
<td>145</td>
<td>12</td>
<td>65</td>
<td>57</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 2. Meta-analysis of the association between *IL-18* gene polymorphisms and AD susceptibility

<table>
<thead>
<tr>
<th>Genetic contrasts</th>
<th>Random/ Fixed effect mode</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>I-squared</th>
<th>P for heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>-607 C/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A vs. C</td>
<td>Random</td>
<td>0.79 (0.61, 1.01)</td>
<td>0.063</td>
<td>63.5%</td>
<td>0.027</td>
</tr>
<tr>
<td>AA+CA vs. CC</td>
<td>Fixed</td>
<td>0.73 (0.58, 0.92)</td>
<td>0.007* 28.5%</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>AA vs. CC+CA</td>
<td>Random</td>
<td>0.74 (0.46, 1.18)</td>
<td>0.201</td>
<td>66.0%</td>
<td>0.019</td>
</tr>
<tr>
<td>AA vs. CC</td>
<td>Random</td>
<td>0.59 (0.33, 1.05)</td>
<td>0.072</td>
<td>69.3%</td>
<td>0.011</td>
</tr>
<tr>
<td>CA vs. CC</td>
<td>Fixed</td>
<td>0.75 (0.59, 0.96)</td>
<td>0.021* 0.0%</td>
<td>0.683</td>
<td></td>
</tr>
<tr>
<td>-137 G/C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C vs. G</td>
<td>Fixed</td>
<td>0.79 (0.66, 0.94)</td>
<td>0.009* 45.9%</td>
<td>0.116</td>
<td></td>
</tr>
<tr>
<td>CC+GC vs. GG</td>
<td>Random</td>
<td>0.72 (0.51, 1.03)</td>
<td>0.073</td>
<td>58.8%</td>
<td>0.045</td>
</tr>
<tr>
<td>CC vs. GG+GC</td>
<td>Fixed</td>
<td>0.57 (0.34, 0.97)</td>
<td>0.040* 0.0%</td>
<td>0.896</td>
<td></td>
</tr>
<tr>
<td>CC vs. GG</td>
<td>Fixed</td>
<td>0.57 (0.33, 0.97)</td>
<td>0.039* 0.0%</td>
<td>0.767</td>
<td></td>
</tr>
<tr>
<td>GC vs. GG</td>
<td>Random</td>
<td>0.75 (0.42, 1.10)</td>
<td>0.137</td>
<td>61.2%</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Bold values are statistically significant (P<0.05).

Overall results. Potential publication bias was investigated using Beggar’s and Egger’s linear regression test [19]. HWE was assessed in the controls using the Pearson’s chi-square test. *P* values of less than 0.05 were considered to indicate significant publication bias.

Results

Characteristics of the published studies

We identified six eligible studies in this meta-analysis [10-15]. The selection process is presented in Figure 1 and the characteristics of the six studies are summarized in Table 1 [10-15]. Four studies investigated both -607 C/A and -137 G/C polymorphisms [10-12, 15]. Included studies were published from 2007 to 2015. Genotype distributions of the controls in these studies all conformed to HWE. The NOS scores of all included studies ranged from 7 to 8, indicating that they were of high methodological quality. Genomic DNA was extracted from peripheral blood samples in all six studies [10-15]. One study used sequence-specific primers (SSP)-polymerase chain reaction (PCR) polymorphism analysis for genotyping [10] and five used PCR [11-15]. For the -607 C/A polymorphism, five studies with 781 AD patients and 876 normal controls were included [10-12, 14, 15]. Three studies were performed in Caucasian populations [11, 12, 14] and two in Asian populations [10, 15]. For the -137 G/C polymorphism, five studies with 862 AD patients and 713 normal controls were analyzed [10-13, 15]. Two studies were conducted in Caucasians [11, 12] and three in Asian populations [10, 13, 15].
Relationship between *IL-18* gene polymorphisms and Alzheimer’s disease

Meta-analysis: IL-18 -607 C/A polymorphism

Fixed effects were assumed for the dominant model (AA+CA vs. CC), and heterozygous model (CA vs. CC), as these did not display significant heterogeneity, whereas random-effects models were used for the allele model (A vs. C), recessive model (AA vs. CC+CA), and homozygous model (AA vs. CC), which were significantly heterogeneous.

As shown in Table 2, the *IL-18* gene -670 C/A polymorphism was associated with AD in the dominant and heterozygous models (AA+CA vs. CC: OR, 0.73; 95% CI, 0.58-0.92, *P* = 0.007, **Figure 2**: CA vs. CC: OR, 0.75; 95% CI, 0.59-0.96, *P* = 0.021). Stratification analyses according to ethnicity and apolipoprotein-E ε4 (APOE4) status (Table 3). The results indicated that *IL-18* gene -670 C/A polymorphism may decrease the risk of AD in those carrying the APOE4 allele in the allele model, dominant model, recessive model, and the homozygous model. We assessed sensitivity by omitting each study one at a time in each genetic model. Upon exclusion of the study of Segat et al., [11], the pooled estimates of the remaining four studies [10, 12, 14, 15] showed that the -670 C/A polymorphism may decrease the risk of AD in the allele model (A vs. C, **Figure 3**), recessive model, and homozygous model. Both Egger’s and Begg’s tests suggested that there was no obvious publication bias in the overall analysis for the -670 C/A polymorphism.

Meta-analysis: IL-18 -137 G/C polymorphism

Fixed effects models were applied for the allele model (C vs. G), recessive model (CC vs. GG+GC), and homozygous model (CC vs. GG), while random effects models were used for the dominant model (CC+GC vs. GG) and heterozygous model (GC vs. GG). Our data indicated that the *IL-18* -137 G/C polymorphism may be protective against AD (C vs. G: OR, 0.79; 95% CI, 0.66-0.94, *P* = 0.009, **Figure 4**: CC vs. GG+GC: OR, 0.57; 95% CI, 0.34-0.97, *P* = 0.040; CC vs. GG: OR, 0.57; 95% CI, 0.33-0.97, *P* = 0.039) (Table 2). Stratification analyses also suggested that the *IL-18* gene -137 G/C polymorphism decreases the risk of AD, especially in Asians and APOE4 carriers. Sensitivity analysis indicated that -137 G/C polymorphism may protect against AD in the dominant model (CC+GC vs. GG, **Figure 5**) and heterozygous model by exclusion of the Segat et al. study [11]. For the -137 G/C polymorphism, the *p* value of Egger’s and Begg’s tests indicated that there was no evident publication bias.
Relationship between IL-18 gene polymorphisms and Alzheimer’s disease

Table 3. Stratified analyses between the IL-18 gene polymorphisms and risk of AD

<table>
<thead>
<tr>
<th>Variable</th>
<th>-607 C/A (case/control)</th>
<th>OR (95% CI); P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>CA</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>Caucasian</td>
<td>213/209</td>
</tr>
<tr>
<td></td>
<td>Asian</td>
<td>51/29</td>
</tr>
<tr>
<td></td>
<td>APOE4 Positive</td>
<td>29/6</td>
</tr>
<tr>
<td></td>
<td>APOE4 Negative</td>
<td>22/23</td>
</tr>
</tbody>
</table>

	-137 G/C (case/control)								
	GG	GC	CC	C vs. G	CC+GC vs. GG	CC vs. GG+GC	CC vs. GG	GC vs. GG	
Ethnicity	Caucasian	258/151	221/121	22/24	0.93 (0.73, 1.17); 0.509	1.00 (0.74, 1.37); 0.989	0.58 (0.31, 1.06); 0.078	0.61 (0.32, 1.14); 0.119	1.08 (0.78, 1.50); 0.645
	Asian	280/280	76/127	5/10	0.62 (0.46, 0.82); 0.001*	0.56 (0.39, 0.81); 0.002*	0.56 (0.19, 1.64); 0.268	0.47 (0.16, 1.37); 0.166	0.58 (0.42, 0.81); 0.001*
	APOE4 Positive	64/18	15/17	0/1	0.29 (0.14, 0.61); 0.001*	0.23 (0.10, 0.55); 0.001*	Na	Na	0.24 (0.10, 0.59); 0.002*
	APOE4 Negative	58/78	21/41	2/5	0.74 (0.43, 1.26); 0.264	0.70 (0.38, 1.32); 0.270	Na	Na	0.73 (0.38, 1.39); 0.331

*Bold values are statistically significant (P<0.05). Na: Not available.
Relationship between *IL-18* gene polymorphisms and Alzheimer’s disease

![Figure 3](Image)

Figure 3. Sensitivity analysis shows odds ratio for the association between the *IL-18* gene -670 C/A polymorphism and risk of AD with allele model (A vs. C).

Discussion

This is the first meta-analysis to summarize the evidence to date regarding the association between *IL-18* gene polymorphisms and the risk of AD. Based on our results, *IL-18* gene polymorphisms may decrease the risk of AD, especially among Asian and APOE4-positive AD patients.

The role of inflammation in the pathogenesis of AD has been investigated by several studies focusing on production of cytokines such as IL-1, IL-6, and TNF, which are associated with neuroinflammation [20]. *IL-18* is a member of the IL-1 superfamily of pro-inflammatory cytokines produced in the brain. The involvement of *IL-18* in mediating neuroinflammation and neurodegeneration among brain diseases has recently been reported [21, 22]. Several studies found that *IL-18* plasma level was significantly increased in AD patients [23-25]. Bossù et al. found significantly increased production of *IL-18* in stimulated blood mononuclear cells from AD patients, which was associated with cognitive impairment [26]. Furthermore, a previous meta-analysis reported significantly higher concentrations of the proinflammatory cytokines *IL-18* in the peripheral blood of AD subjects compared with control subjects [27]. The above studies indicate that *IL-18* may be a risk factor for AD patients. It is possible that *IL-18* promoter polymorphisms may be useful to predict the risk and outcome of AD. However, our data indicate that *IL-18* gene polymorphisms (-607 C/A and -137 G/C) decrease the risk of AD. Stratification analyses suggested these two SNPs were both related to AD, especially in Asian and APOE4-positive patients.

The two earliest studies, in Italian populations, investigated the relationship between *IL-18* polymorphisms (-607 C/A and -137 G/C) and AD, with conflicting results [11, 12]. Bossù et al. found that these two SNPs were genetic risk factors for AD [12], whereas Segat et al. suggested that they were not associated with AD [11]. The distribution of *IL-18* functional polymorphisms and the relationship between *IL-18* and AD among different races [11, 12] cannot be evaluated in this study since the populations analyzed were both Italian. As noted by Segat et al. [11], the significance of the results of Bossu et al. [12] may diminish after multiple test corrections. They only considered p values for -607 C/A and -137 G/C polymorphisms, but ignored the interference of confounding factors, such as age. Another significant difference between these two studies was that Segat et al. [11] enrolled patients at the onset of Alzheimer’s disease (EOAD) (age ≤65 years), while Bossu et al. [12] recruited patients with late onset Alzheimer’s disease (LOAD) (age >65 years). Thus, we interpreted these results with caution [11, 12]. Two studies conducted by Yu et al. and Wang et al. in Chinese Han populations demonstrated an association between 137 G/C polymorphism and the risk of AD [10, 15]. However, Yu et al. found that these associations were influenced by the presence of ApoE4 alleles, and -137 G alleles were shown to closely interact with ApoE4 [10]. Furthermore, a previous study demonstrated that the APOE4 gene was a genetic risk factor for AD patients [28]. Therefore, this effect may be due largely to the concomitant presence of APOE ε4, but not -137 G/C polymorphisms.
Relationship between *IL-18* gene polymorphisms and Alzheimer’s disease

In this meta-analysis, our results indicated that *IL-18* gene polymorphisms (-607 C/A and -137 G/C) may decrease the risk of AD. However, positive results were obtained when the fixed-effects model was used (see Table 2). The fixed-effects model is prone to false positives, which may result in publication bias. Therefore, we used the more conservative random-effects model to reanalyze the data. The results still indicated that *IL-18* gene polymorphisms were protective against AD, supporting our previous results. Studies from Bossu et al., 2007 [12] and Bossu et al., 2008 [26] presented a partially overlapping population; therefore, we did not include the latter study [26]. Bossu et al. showed a significant correlation between IL-18 production and cognitive decline in AD patients [26]. However, they could not verify whether the association was due to *IL-18* gene polymorphisms (-607 C/A and -137 G/C). Sensitivity analysis identified the study conducted by Segat et al. [11] as largely responsible for the heterogeneity of results of -607 C/A and -137 G/C in this meta-analysis. Moreover, removing the study of Segat et al. [11] from the overall analysis led to a statistically significant association between *IL-18* gene polymorphisms (-607 C/A and -137 G/C) and reduced risk of AD.

Several potential limitations should be taken into consideration. First, the number of studies included was small, and the sample sizes were not large. Second, our analysis is subject to...
publication bias; any unpublished trials would have been missed. Third, our results were based on unadjusted estimates, without considering other confounders (such as age, gender, and environmental factors); as a result, more precise analysis should be conducted if individual data are available. Fourth, only Caucasian and Asian populations were included in this meta-analysis, and further studies on other ethnic groups should be pursued because the incidence of these polymorphisms may vary among ethnicities.

In conclusion, this meta-analysis suggests that IL-18 gene polymorphisms may decrease the risk of AD. Stratification analyses revealed that IL-18 gene polymorphisms are also associated with AD, especially in Asian and APOE4-positive AD patients. Further larger-scale studies are required to investigate the association between -607 C/A and -137 G/C polymorphisms and AD to confirm our results.

Acknowledgements

We thank all the authors of the original papers who provided data to support this meta-analysis.

Disclosure of conflict of interest

None.

Abbreviations

CI, confidence interval; OR, odds ratio; AD, Alzheimer’s disease; EOAD, onset of Alzheimer’s disease; LOAD, late onset of Alzheimer’s disease; TNF, tumor necrosis factor; SNPs, single nucleotide polymorphisms; HWE, Hardy-Weinberg equilibrium; APOE4, apolipoprotein-E ε4; NOS, Newcastle-Ottawa Scale.

Address correspondence to: Xiaohang Wang, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Hangzhou 310023, Zhejiang, China. Tel: +86-571-87071039; Fax: +86-571-87780654; E-mail: xiaohangwang632@sina.com

References

[13] Tian M, Peng Y, Hou DR, Li W, Feng XL and Yu ZL. Association of IL-1, IL-18, and IL-33 gene

[22] Dinarello CA. Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 2006; 83: 447S-455S.

