Original Article
Correlation between OPN gene polymorphism and susceptibility to nasopharyngeal carcinoma

Pengju Yu1*, Weiguan Chen2*, Wei Chen3, Zeqing Li4

1Department of Otolaryngology, Kunshan Hospital of Traditional Chinese Medicine, 215300, Jiangsu Province, China; 2Operation Room, Kunshan Hospital of Traditional Chinese Medicine, 215300, Jiangsu Province, China; 3Department of Otolaryngology-Head and Neck Surgery, Jinling Hospital, Nanjing Clinical Medical College, Second Military Medical University, Nanjing 210002, Jiangsu, China; 4Department of Otolaryngology Head and Neck Surgery, China Jiangsu Province Traditional Chinese Medicine Hospital, 210029, China. *Equal contributors.

Received April 30, 2016; Accepted August 6, 2016; Epub August 15, 2017; Published August 30, 2017

Abstract: We studied the correlation between osteopontin (OPN) gene polymorphism and susceptibility to nasopharyngeal carcinoma (NPC) among Han population in Jiangsu Province. The case-control study design was used. From February 1st 2011 to February 20th 2014, 197 patients of NPC treated at our hospital were included. For the control group, 197 healthy volunteers receiving physical examination at the same hospital from January 1st 2013 to August 1st 2013 were randomly selected. Single base extension (SBE)-PCR and DNA sequencing were performed to detect single nucleotide polymorphisms (SNPs) at rs11728697 and rs4754 locius in OPN gene for all cases. The haplotype frequency of the OPN gene was analyzed. At rs11728697 locus, the carriers of CT genotype had a higher risk of NPC than those of CC genotype (OR=1.56, 95% CI: 1.01~2.76, X²=4.592, P=0.042). However, TT genotype was not indicative of a higher risk of NPC (OR=0.83, 95% CI: 0.46~1.58, X²=0.043, P=0.876). Allele frequency at this locus was not significantly different between the two groups. At rs4754 locus, the two groups also showed no significant difference in allele and genotype frequencies or haplotype frequency of the OPN gene (P>0.05). In summary, among Zhuang population in Guangxi Province, CT genotype at rs11728697 locus in the OPN gene can increase the susceptibility to NPC, while SNP at rs4754 locus was not relevant.

Keywords: Nasopharyngeal carcinoma, osteopontin, polymorphism, haplotype, susceptibility

Introduction

Nasopharyngeal carcinoma (NPC) is an epithelium-derived malignancy of the head and neck [1, 2]. NPC can be induced by combined action of environmental and genetic factors, and its incidence is rising in China [1, 2]. Susceptibility genes of NPC have been intensively studied in recent years [3-5]. Osteopontin (OPN) is an important cell adhesion molecule, which has close associations with tumor occurrence. Given its role in cell adhesion, migration and survival, tumor angiogenesis and metastasis, OPN gene can be used as the diagnostic marker [6-8]. Although the pathogenesis of NPC is not fully known, the role of cytokines in NPC attracts increasing attention [9, 10]. OPN is a phosphorylated glycoprotein expressed in various cells, which acts as the cell adhesion molecule. OPN upregulation has been noted in the plasma from cancer patients. OPN can inhibit anti-tumor immunity and apoptotic pathways of tumor cells [6-10]. OPN gene is mapped to the long arm of human chromosome 4, consisting of 7 exons and 6 introns. According to the literature, OPN is highly expressed in the plasma from NPC patients, which correlates positively with the malignancy degree and metastasis and usually predicts poor prognosis [11, 12]. It is uncertain whether OPN gene polymorphism correlates with NPC. This study discussed the correlation between SNP of the OPN gene and susceptibility to NPC among Chinese population in China.
Figure 1. Genotyping of rs1172869 locus in the OPN gene (Green: CC genotype; Red: CT genotype; Blue: TT genotype).

Figure 2. Genotyping of rs4754 locus in the OPN gene (Green: CC genotype; Red: CT genotype; Blue: TT genotype).
Using t-test and Hardy-Weinberg equilibrium was tested to see whether the samples were representative of the population. X2 test was adopted to compare the differences in genotype and allele frequencies between the two groups. Dichotomous unconditional Logistic regression was performed to assess the correlation between SNPs and vulnerability to NPC. Odds ratio (OR) and 95% confidence interval (95% CI) were calculated and corrected for the gender factor. SHEsis software was used for haplotype analysis with a=0.05.

Result

SNPs of the OPN gene

As shown in Figures 1 and 2, the different genotype of rs1172869 and rs4754 were identified from three color dots.

Testing of Hardy-Weinberg equilibrium

The genotype and allele frequencies at rs1172869 and rs4754 loci are shown in
Table 1. The genotype distributions at these two loci (P=0.406, P=0.722) obeyed Hardy-Weinberg equilibrium in the control group, which indicated good representativeness of the samples.

Correlation between SNPs of the OPN gene and susceptibility to NPC

As shown in Table 1, at rs1172869 locus, CC genotype is taken as the common genotype with OR=1.00. CT genotype contributed significantly to the susceptibility (OR=1.56, 95% CI 1.01~2.76, X²=4.592, P=0.042), while TT genotype was irrelevant. As compared with C allele, T allele did not increase the susceptibility to NPC. At rs4754 locus, CC genotype is also taken as the common genotype with OR=1.00.

Correlation between haplotype frequency of the OPN gene and susceptibility to NPC

Haplotype frequency distributions at the two loci were analyzed using SHEsis in the two groups. As shown in Table 2, four haplotypes were identified, namely, CC, CT, TC and TT. The frequencies of these four haplotypes did not differ significantly between the two groups (P>0.05).

Discussion

The present study identified SNPs of the OPN gene, which may affect gene transcription and expression and promote tumor occurrence. It is inferred that OPN gene SNPs correlates with susceptibility to NPC.

Lee et al. [14] detected OPN gene polymorphisms in 146 gastric cancer patients and 128 healthy controls. The results showed that TC or CC genotype at SNP-443 locus along with T/T or T/G genotype at SNP-616 locus increased the susceptibility to gastric cancer. Chiu et al. [15] reported that the frequency of insGG/insGG genotype at SNP-156 locus in the OPN gene was significantly higher among patients with oral squamous cell carcinoma than among the healthy population in Taiwan. We found that CC, CT and TT genotypes or C and T alleles at rs4754 locus did not increase the susceptibility to NPC. At Rs1172869 locus, CC and TT genotypes or C and T alleles did not increase the susceptibility to NPC either. However, CT genotype correlated with a higher risk of NPS, with OR=1.56, 95% CI 1.01~2.76. The haplotype analysis indicated that the frequencies of the four haplotypes at the two loci did not differ significantly between the two groups.

Susceptibility genes play an important role in the occurrence of NPC. According to our results, CT genotype at rs1172869 locus in the OPN gene may increase the susceptibility to NPC. However, SNPs at the rs4754 locus were irrelevant. To further elucidate the influence of OPN gene SNPs on NPC on the molecular level, more experiments are needed.

Disclosure of conflict of interest

None.

Address correspondence to: Pengju Yu, Department of Otolaryngology, Kunshan Hospital of Traditional Chinese Medicine, 215300, Jiangsu Province, China. Tel: +86-18626173322; Fax: +86-0512-57303370; E-mail: yyupenju@126.com

References

