Original Article

Erlotinib versus chemotherapy (docetaxel/pemetrexed) as second-line therapy in advanced non-small cell lung cancer: a meta-analysis

Yong Li*, Ting Cheng*, Ling Chen, Qijian Cheng, Huanying Wan

Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China. *Co-first authors.

Received July 18, 2016; Accepted January 4, 2017; Epub March 15, 2017; Published March 30, 2017

Abstract: Background: The meta-analysis aimed to compare the efficacy and safety of erlotinib versus (vs.) chemotherapy (docetaxel/pemetrexed) as second-line therapy in advanced non-small cell lung cancer (NSCLC). Methods: Literature search was completed in databases of PubMed, Embase and Ovid-Medline up to October 20, 2015; and randomized controlled trials (RCTs) met with predefined criteria were selected. Outcomes such as progression-free survival (PFS), overall survival (OS), objective response rate (ORR) and grade 3-4 toxicity between the erlotinib and chemotherapy were evaluated. Risk ratio (RR) and hazard ratio (HR) with their corresponding 95% confidence intervals (CI) were used to calculate the pooled results. Rev.Man5.2 software was utilized for the meta-analysis. Results: A total of 7 articles (including 900 patients receiving erlotinib and 919 patients receiving pemetrexed/docetaxel) were included in this meta-analysis. There was no significant difference between erlotinib and pemetrexed/docetaxel on PFS and OS, as well as ORR. Moreover, the total RR of the rash, anemia, neutropenia and alopecia were 15.74 (95% CI: 4.94-50.19, P<0.001), 0.34 (95% CI: 0.17-0.66, P = 0.002), 0.02 (95% CI: 0.01-0.06, P < 0.001) and 0.05 (95% CI: 0.01-0.40, P = 0.004), respectively. Conclusions: There was no significant difference of the efficacy and safety between erlotinib vs. chemotherapy as the second-line therapy in advanced NSCLC. However, erlotinib might decrease the risk of anemia, neutropenia and alopecia, and increase the risk of rash, compared with the chemotherapy.

Keywords: Advanced non-small cell lung cancer, second-line therapy, erlotinib, docetaxel/pemetrexed, meta-analysis

Introduction

Lung cancer is one of the most common cancers in the world, and it approximately accounts for 18% of total cancer deaths globally [1]. In 2012, nearly 1,590,000 persons are reported to die from the disease worldwide [2]. Mortality rate of lung cancer is different between male and female. It varies from 0.7 to 120.0 per 100,000 persons among differently aged women [3], and is predicted to be 36 among men [4]. Although incidence of lung cancer has decreased in the past decade, 1,054,393 individuals (569,366 men and 485,027 women) have suffered from invasive lung cancer in the USA [5]. Reportedly, the 5-year survive rate of newly diagnosed lung cancer cases is approximately 15% [6]. Non-small-cell lung cancer (NSCLC) is any type of epithelial lung cancer other than small cell lung carcinoma, accounting for about 85% of lung cancers, and most patients are diagnosed at an advanced stage [7].

Although NSCLC patients have received standard first-line chemotherapy, most of them would progress ultimately and need subsequent therapy [7]. Application of anticancer agents in these situations is deemed as “second-line therapy”. Currently, the established agents in the second-line setting for advanced NSCLC treatment include two cytotoxic agents (docetaxel and pemetrexed) and two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) (erlotinib and gefitinib) [8]. TKIs can cause high response rates among individuals with oncogenic kinase-driven malignancies, such as EGFR-mutated NSCLC [9].
Erlotinib vs. chemotherapy in NSCLC

After the application of TKIs, treatment response of this chemo-resistant malignancy is approximately 80%, and for the 20% individuals with poor responses, the possible reason is that a deletion of polymorphism in BIM gene may affect the TKI sensitivity [9].

The EGFR signaling pathway is crucial for regulating tumorigenesis and cell survival, and EGFR gene may be overexpressed in NSCLC development [10, 11]. Activation of EGFR gene mutations that encode the tyrosine kinase domain is highly responsive to EGFR-TKIs [12, 13]. A previous meta-analysis indicated that progression-free survival (PFS) and response rates were improved in patients with EGFR mutation who receive EGFR-TKIs, compared with chemotherapy [14]. Lee and co-workers also suggest that EGFR-TKIs therapy can delay disease progression in NSCLC patients with EGFR mutation [15]. However, most NSCLC patients have wild-type EGFR. Indeed, the overall EGFR mutation rate is only 16.7% in unselected patients [16], and about 10% of Western patients and almost 50% of Asian patients are found with the activating mutations [17]. Therefore, it remains uncertain whether EGFR-TKIs would still be of benefit in EGFR wild-type NSCLC patients.

A study demonstrates erlotinib provides no significant benefit in EGFR wild-type patients [18], while other studies indicate that EGFR-TKIs are inferior to chemotherapy in the second-line setting in EGFR wild-type NSCLC [19-21]. However, in Zhao’s meta-analysis, chemotherapy significantly improves PFS, compared with EGFR-TKIs, and is considered as a second-line treatment in advanced NSCLC with wild-type EGFR [22]. In addition, a recent meta-analysis indicates that administration of erlotinib is remarkably related to an increased risk of all-grade diarrhea, stomatitis and high-grade diarrhea, for advanced NSCLC treatment [23]. Therefore, the selection of EGFR-TKIs or chemotherapy in the second-line treatment for the NSCLC is still inconsistent.

In the present work, we conducted a meta-analysis of recently published randomized controlled trials (RCTs) to compare the efficacy and safety between EGFR-TKI, erlotinib, and docetaxel/pemetrexed for the management of advanced NSCLC patients, aiming to find the optimal second-line therapy for NSCLC.

Materials and methods

Search strategy

A systematic literature search was conducted in databases such as PubMed, Embase and Ovid-Medline up to October 20, 2015, to identify relevant articles published in English. The following keywords were used for the literature search: "non-small-cell lung cancer" OR "NLCSC" AND "erlotinib" AND "pemetrexed" OR "docetaxel" AND "randomized controlled trial" OR "RCT". Meanwhile, manual bibliographic search was further performed for additional studies, and the included articles of previous meta-analyses were also reviewed.

Study selection

Studies included in the present meta-analysis should meet the following criteria: (1) the study was a randomized controlled trial (RCT); (2) the patient was diagnosed with advanced NSCLC, and defined as inoperable locally advanced (stage IIIIB) or metastatic or recurrent disease (stage IV); (3) the experimental group was NSCLC patients received erlotinib administration and the control group was those received docetaxel/pemetrexed administration; and (4) the clinical outcomes were mentioned such as PFS, overall survival (OS), objective response rate (ORR) and toxicity (grade 3-4 toxicity). On
Table 1. Characteristics of studies included in the meta-analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Study location</th>
<th>Study data</th>
<th>Line of treatment</th>
<th>Stage</th>
<th>Diagnosis</th>
<th>Treatment</th>
<th>N</th>
<th>Median age (years)</th>
<th>Males (%)</th>
<th>Smoking status</th>
<th>EGFR mutation analysis</th>
<th>Histology (squamous)</th>
<th>EGFR WT patients</th>
<th>Follow-up Median month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee 2013</td>
<td>33 study centres in 8</td>
<td>2007.12-2010.07</td>
<td>Second</td>
<td>IIIA, IIIB, IV</td>
<td>Histological or cytological</td>
<td>Erlotinib</td>
<td>82</td>
<td>53.9</td>
<td>34.1</td>
<td>Never smokers</td>
<td>Real-time PCR method</td>
<td>0</td>
<td>EGFR unselected</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>countries (Korea, et al)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pemetrexed</td>
<td>80</td>
<td>55.9</td>
<td>43.8</td>
<td>Never smokers</td>
<td></td>
<td>0</td>
<td>EGFR unselected</td>
<td>18.0</td>
</tr>
<tr>
<td>Karampeazis</td>
<td>9 centers</td>
<td>2006.01-2010.04</td>
<td>Second or third</td>
<td>IIIB, IV</td>
<td>NA</td>
<td>Erlotinib</td>
<td>166</td>
<td>65.0</td>
<td>81.3</td>
<td>74.7% active/ex-smokers</td>
<td>Bidirectional Automatic sequencing</td>
<td>39</td>
<td>EGFR unselected</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pemetrexed</td>
<td>166</td>
<td>66.0</td>
<td>83.1</td>
<td>77.1% active/ex-smokers</td>
<td></td>
<td>36</td>
<td>EGFR unselected</td>
<td>27.3</td>
</tr>
<tr>
<td>Li 2014</td>
<td>China</td>
<td>2008.12-2012.05</td>
<td>Second</td>
<td>IIIB, IV, Recurrent</td>
<td>Histological</td>
<td>Erlotinib</td>
<td>61</td>
<td>54.3</td>
<td>65.6</td>
<td>75.4% current and former smokers</td>
<td>ARMS</td>
<td>NA</td>
<td>61</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pemetrexed</td>
<td>62</td>
<td>55.1</td>
<td>62.9</td>
<td>72.6% current and former smokers</td>
<td></td>
<td>NA</td>
<td>62</td>
<td>14.7</td>
</tr>
<tr>
<td>Kawaguchi</td>
<td>Japan</td>
<td>2009.08-2012.07</td>
<td>Second or third</td>
<td>IIIB or IV</td>
<td>Pathologically or histologically</td>
<td>Erlotinib</td>
<td>150</td>
<td>68.0</td>
<td>72.0</td>
<td>74.0% ever smokers</td>
<td>Highly sensitive PCR-based method</td>
<td>29</td>
<td>109</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Docetaxel</td>
<td>151</td>
<td>67.0</td>
<td>70.9</td>
<td>75.8% ever smoker</td>
<td></td>
<td>32</td>
<td>90</td>
<td>8.9</td>
</tr>
<tr>
<td>Garassino</td>
<td>Italy</td>
<td>2007.10-2012.03</td>
<td>Second</td>
<td>NA</td>
<td>NA</td>
<td>Erlotinib</td>
<td>109</td>
<td>66.0</td>
<td>71.0</td>
<td>83.0% current and former smokers</td>
<td>Sanger sequencing + RFLP</td>
<td>31</td>
<td>109</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Docetaxel</td>
<td>110</td>
<td>67.0</td>
<td>73.0</td>
<td>73.0% current and former smokers</td>
<td></td>
<td>23</td>
<td>110</td>
<td>33.0</td>
</tr>
<tr>
<td>Gregorc</td>
<td>Italy</td>
<td>2008.02-2012.04</td>
<td>Second</td>
<td>IIIB or IV</td>
<td>Histological or cytological</td>
<td>Erlotinib</td>
<td>134</td>
<td>66</td>
<td>74</td>
<td>84% current and former smokers</td>
<td>NA</td>
<td>31</td>
<td>79</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pemetrexed</td>
<td>74+55</td>
<td>64</td>
<td>71</td>
<td>87% current and former smokers</td>
<td></td>
<td>16</td>
<td>84</td>
<td>32.4</td>
</tr>
<tr>
<td>Ciuleanu</td>
<td>77 sites in 24 countries</td>
<td>2006.04-2010.02</td>
<td>Second</td>
<td>IIIB or IV</td>
<td>Histologically</td>
<td>Erlotinib</td>
<td>203</td>
<td>59</td>
<td>79</td>
<td>85% current and former smokers</td>
<td>PCR-based method</td>
<td>77</td>
<td>75</td>
<td>27.9</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pemetrexed</td>
<td>105+116</td>
<td>59</td>
<td>72</td>
<td>80% current and former smokers</td>
<td></td>
<td>77</td>
<td>74</td>
<td>24.8</td>
</tr>
</tbody>
</table>
Erlotinib vs. chemotherapy in NSCLC

the other hand, retrospective studies, non-randomized controlled clinical studies, reviews, animal studies, and studies did not provide sufficient data were excluded. In addition, if multiple studies were published in different journals based on the same study population or the same dataset, only the recent one with the most complete study was included.

Data extraction and quality assessment

In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses statement (PRISMA) [24], two investigators independently extracted the following data from each study with a predefined information table: first author’s name, publication year, line of treatment, sample size, duration of follow up, relevant baseline data, method of EGFR mutation analysis, and relevant data to calculate the effect size. The risk of bias of included studies was assessed by two investigators using the Cochrane risk of bias assessment tool [25]. Any discrepancy was resolved by discussion with a third investigator.

Figure 2. Outcomes of the quality assessment of the included randomized controlled trials.

Statistical analysis

The PFS, OS and ORR in the erlotinib group were compared with the chemotherapy (docetaxel/pemetrexed) group. The risk ratio (RR) and 95% confidence interval (CI) was used as the effect size to calculate the pooled ORR and the toxicities using the Mantel Haenszel method [26], while the hazard ratio (HR) and its corresponding 95% CI was the effect size to evaluate the pooled PFS and OS using the Inverse Variance method [27]. The heterogeneity across studies was examined by the Cochran’s Q statistic and the I² statistic [28]. The fixed-effects model was selected for the homogeneous outcomes (P≥0.05 and I²<50%) and the random-effects model was applied for heterogeneous outcomes (P<0.05 or I²≥50%). Subgroup analyses stratified by different chemotherapy agents (docetaxel/pemetrexed/docetaxel + pemetrexed) and different EGFR type (EGFR wild type/EGFR unselected) were used to assess the impacts on all the outcomes. Additionally, for the OS outcome, subgroup analyses stratified by sex, Eastern Cooperative Oncology Group (ECOG) performance status, smoking status and histology were also performed. The above analyses were implemented with the Review Manager 5.2 software (Cochrane Library Software, Oxford, UK), and a P value less than 0.05 was considered to be statistically significant. All P values and 95% CIs were two-sided.

Results

Literature retrieval

The process of study selection is shown in Figure 1. By the preliminary search, a total of 286 potentially relevant articles were screened out, 266 of which were excluded since they were duplicates or obviously irrelevant. For the remaining studies, 14 of them were excluded for they did not meet the inclusion criteria (4
were review articles and 10 did not compare erlotinib with docetaxel or pemetrexed). Moreover, an additional study was included from the reference list of the eligible studies. Therefore, a total of 7 RCTs were finally included in the present meta-analysis [21, 29-34].

Characteristics of included studies

The baseline characteristics of the included studies are presented in Table 1. It was revealed that all of them were published in recent 3 years and focused on the role of erlotinib as second-line or third-line treatment for patients with NSCLC. The 7 studies were consisted of a total of 1819 patients (including 900 patients received erlotinib and 919 patients received pemetrexed or docetaxel). Three trials compared erlotinib to pemetrexed [29, 31, 32], two trials compared erlotinib to docetaxel [21, 30], and the other two trials compared erlotinib to chemotherapies involving pemetrexed and docetaxel [33, 34]. Patients with only advanced EGFR wild type lung cancer cases were reported in two studies [21, 32], and patients in two studies were EGFR-unselected [29, 31], while patients with both EGFR wild type and EGFR-unselected were reported in three studies [30,
In addition, the risk of bias assessment of the selected studies is presented in Figure 2. All studies had a low risk of bias on each bias item except the performance bias. Moreover, the studies carried out by Garassino [21] and Li [32] also had a high risk of detection bias. Overall, the included studies had a favorable quality and were suitable to perform the meta-analysis.

Comparison of the effects on PFS between erlotinib and chemotherapy

As shown in the forest plots in Figure 3, the random-effects model was applied for almost all the HR estimates due to substantial heterogeneity (P<0.05, I^2>50%) among studies, except for two comparisons (erlotinib vs. pemetrexed and erlotinib vs. pemetrexed + docetaxel), which presented significant homogeneity (P>0.05, I^2<50%) and thus used fixed-effects model. The total HR (erlotinib vs. pemetrexed + docetaxel) of 1.06 (95% CI: 0.87-1.29, P = 0.58) indicated there was no significant difference of PFS between erlotinib and chemotherapy treatments (Figure 3A). When stratified by different chemotherapy types, the pooled estimates showed there was no significant differences on PFS between erlotinib and pemetrexed or docetaxel (erlotinib vs. pemetrexed: HR = 0.90, 95% CI: 0.78-1.04, P = 0.16; erlotinib vs. docetaxel: HR = 1.06, 95% CI: 0.48-2.32, P = 0.89).

Figure 4. Forest plots for hazard ratio of erlotinib versus chemotherapy (docetaxel/pemetrexed) in overall survival (OS) in advanced non-small cell lung cancer (NSCLC). A. The total estimate and the subgroup analysis stratified by different chemotherapy agents; B. The subgroup analysis stratified by different EGFR types. Squares represent the effect size for the hazard ratio of OS among advanced NSCLC patients with erlotinib versus chemotherapy. Size of the squares is study-specific weight. Horizontal lines represent 95% confidence intervals (CI). The diamond shape represents the pooled estimates within each analysis.
Erlotinib vs. chemotherapy in NSCLC

Table 2. Subgroup analysis of overall survival (OS) between Erlotinib and chemotherapy (docetaxel/pemetrexed)

<table>
<thead>
<tr>
<th>Groups</th>
<th>No. of studies</th>
<th>Erlotinib vs. chemotherapy (docetaxel/pemetrexed)</th>
<th>HR (95% CI)</th>
<th>Pₐ</th>
<th>P (%)</th>
<th>Pₙ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>3</td>
<td></td>
<td>0.8972 [0.7436; 1.0825]</td>
<td>0.2574</td>
<td>0</td>
<td>0.4413</td>
</tr>
<tr>
<td>Women</td>
<td>3</td>
<td></td>
<td>0.8965 [0.6526; 1.2315]</td>
<td>0.5000</td>
<td>44.7</td>
<td>0.1638</td>
</tr>
<tr>
<td>ECOG performance status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 or 1</td>
<td>3</td>
<td></td>
<td>0.8871 [0.7422; 1.0602]</td>
<td>0.1878</td>
<td>0</td>
<td>0.6822</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>0.9754 [0.5418; 1.7560]</td>
<td>0.9339</td>
<td>55.7</td>
<td>0.1049</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoker</td>
<td>3</td>
<td></td>
<td>0.7451 [0.5097; 1.0893]</td>
<td>0.1289</td>
<td>0</td>
<td>0.6727</td>
</tr>
<tr>
<td>Past smoker</td>
<td>2</td>
<td></td>
<td>0.9650 [0.7487; 1.2439]</td>
<td>0.7834</td>
<td>0</td>
<td>0.4268</td>
</tr>
<tr>
<td>Present smoker</td>
<td>2</td>
<td></td>
<td>0.9247 [0.7733; 1.1059]</td>
<td>0.3912</td>
<td>0</td>
<td>0.4523</td>
</tr>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamous cell</td>
<td>2</td>
<td></td>
<td>0.8698 [0.6421; 1.1784]</td>
<td>0.368</td>
<td>0</td>
<td>0.8989</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>2</td>
<td></td>
<td>0.8047 [0.5717; 1.1326]</td>
<td>0.2128</td>
<td>55.2</td>
<td>0.1353</td>
</tr>
<tr>
<td>Other NSCLC</td>
<td>2</td>
<td></td>
<td>1.5403 [0.9172; 2.5868]</td>
<td>0.1024</td>
<td>0</td>
<td>0.5095</td>
</tr>
</tbody>
</table>

ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; CI, confidence interval; Pₐ, P value for test of the association; Pₙ, P value for between-study heterogeneity; NSCLC, non-small cell lung cancer.

0.89; Figure 3A). In addition, similar results were observed in the subgroup analyses stratified by EGFR status. The pooled HR of EGFR-unselected patients and patients with wild type EGFR were 1.11 (95% CI: 0.94-1.32, P = 0.23) and 1.07 (95% CI: 0.73-1.56, P = 0.73), respectively, all without statistical significance (Figure 3B).

Comparison of the effects on OS between erlotinib and chemotherapy

The outcome of OS was shown in Figure 4. No significant heterogeneity (P>0.05, I²<50%) was identified among all the included studies, so the fixed effects model was applied to calculate the pooled results. However, in the comparison of erlotinib with docetaxel, a significant heterogeneity was detected (I²>50%), thus the random effects model was used. As a result, erlotinib did not show any significant difference on OS, compared with the pemetrexed + docetaxel combination therapy (HR = 1.04, 95% CI: 0.88-1.22, P = 0.67, Figure 4A). Moreover, no significant difference was observed when stratified by chemotherapy agents (erlotinib vs. docetaxel: HR = 0.90, 95% CI: 0.59-1.38, P = 0.63; erlotinib vs. pemetrexed: HR = 1.19, 95% CI: 0.89-1.59, P = 0.25; erlotinib vs. docetaxel + pemetrexed: HR = 1.07, 95% CI: 0.85-1.34, P = 0.58, Figure 4A) or EGFR status (EGFR-unselected: HR = 1.05, 95% CI: 0.92-1.21, P = 0.46; wild type EGFR: HR = 0.90, 95% CI: 0.75-1.07, P = 0.23, Figure 4B). Furthermore, there did not detect any significant association when stratified by sex, ECOG performance status, smoking status and histology (P>0.05, Table 2).

Comparison of the effects on ORR between erlotinib and chemotherapy

The analysis of the ORR was presented in Figure 5. There was significant heterogeneity (P<0.001, I²>50%) across the included studies, thus the random effects model was applied for the overall analysis; but the fixed-effects model was utilized in the comparison of erlotinib vs. pemetrexed and erlotinib vs. pemetrexed + docetaxel due to a lack of remarkable heterogeneity (P>0.05, I² = 0). No significant differences were observed from the total estimate on ORR between erlotinib and chemotherapies (RR = 0.88, 95% CI: 0.46-1.70, P = 0.71). The pooled RRs of erlotinib vs. pemetrexed, and erlotinib vs. docetaxel + pemetrexed were 1.72 (95% CI: 0.71-4.20, P = 0.23) and 1.00 (95% CI: 0.60-1.68, P = 1.00), respectively, which also showed a comparable effect between erlotinib and the two chemotherapies. Similar results were also observed in the subgroup analysis stratified by different EGFR status (EGFR-unselected: RR = 1.14, 95% CI: 0.73-1.78, P = 0.56; wild type EGFR: RR = 0.53, 95%
Erlotinib vs. chemotherapy in NSCLC

CI: 0.11-2.45, P = 0.41). However, the pooled analysis of two studies [21, 30] demonstrated a significantly lower ORR for erlotinib compared to docetaxel (RR = 0.25, 95% CI: 0.12-0.52, P = 0.001) under a fixed-effects model (P = 0.59, I^2 = 0%).

Comparison of the effects on toxicities between erlotinib and chemotherapy

The analyses of toxicities were shown in Table 3. Compared with chemotherapy, erlotinib resulted in significantly higher grade 3-4 toxicities.
such as rash (RR = 15.74, 95% CI: 4.94-50.19, P<0.001). Besides, patients treated with erlotinib also revealed a remarkably increased risk in diarrhea (RR = 2.25, 95% CI: 0.99-5.12, P = 0.05). However, erlotinib achieved a significantly decreased risk in anemia (RR = 0.34, 95% CI: 0.17-0.66, P = 0.002), neutropenia (RR = 0.02, 95% CI: 0.01-0.06, P<0.001) and alopecia (RR = 0.05, 95% CI: 0.01-0.40, P = 0.004). In addition, no significant difference was found between the two treatments in respects of vomiting/nausea and fatigue/asthenia disorder (P<0.05).

Discussion

After the failure of first-line chemotherapy, docetaxel, pemetrexed, or erlotinib is acceptable as the second- or third- line therapy for patients with advanced NSCLC [35, 36]. Recent studies about second-line treatment indicate that chemotherapy (docetaxel or pemetrexed) is superior to EGFR-TKIs on PFS for EGFR wild type NSCLC [19, 20, 37]. However, our meta-analysis combined 1819 patients (including 900 patients received erlotinib and 919 patients received docetaxel/pemetrexed) in 7 RCTs published in recent three years, and demonstrated that erlotinib presented no significant differences in outcomes of PFS, OS and ORR compared to the docetaxel/pemetrexed for the second- or third-line treatment of advanced NSCLC patients, especially of the EGFR-unselected patients and patients with wide type EGFR.

A recent meta-analysis suggests that chemotherapy is significantly superior to EGFR-TKI in terms of PFS as second-line treatment for the NSCLC [22]. However, in that meta-analysis, only three trials were included in the comparison of erlotinib with chemotherapy. Gregorc and co-workers’ study also shows chemotherapy is more effective than EGFR-TKIs for the management of EGFR wild type patients [34]. Whilst, in their meta-analysis, only two trails compare the effectiveness of erlotinib with pemetrexed/docetaxel. Consistent with this result, another meta-analysis also finds that chemotherapy significantly prolongs PFS in second-line or subsequent therapy for wild type EGFR NSCLC [15]. However, only two trials involving erlotinib vs. chemotherapy are included in their study [15]. Gao and his colleagues also demonstrate that chemotherapy is more advantageous than EGFR-TKIs in PFS for EGFR wild type patients, while the meta-analysis is presented in part at the 2013 American Society of Clinical Oncology annual meeting and only includes three trials [38]. In regardless of the small numbers of the included trails, the above meta-analyses all indicate that chemotherapy has an improvement for EGFR wild type patients compared with EGFR-TKIs, which is inconsistent with our results. It might be due to that the above meta-analyses all recruit the EGFR wild type patients who have non-activating EGFR gene mutations, and this might result in the failure of tyrosine kinase encoding and response to EGFR-TKIs.

Our study also evaluated the toxicities between erlotinib and docetaxel/pemetrexed, in addition to the estimations on PFS, OS and ORR. The total results suggested that the administration of erlotinib caused a significantly decreased risk in anemia, neutropenia and alopecia, compared with the chemotherapy, but resulted in an increased risk of rash and diarrhea. Moreover, no significant difference was found between the erlotinib and docetaxel/pemetrexed in respects of vomiting/nausea and fatigue/asthenia disorder. Inconsistent with our findings, Gregorc’s meta-analysis sug-

Table 3. Comparison of grade 3-4 toxicities between erlotinib and chemotherapy

<table>
<thead>
<tr>
<th>Grade 3-4 toxicity</th>
<th>Included trials</th>
<th>RR (95% CI)</th>
<th>P value</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>5</td>
<td>15.74 (4.94-50.19)</td>
<td><0.001</td>
<td>P = 0.95, I² = 0%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>2.25 (0.99-5.12)</td>
<td>0.05</td>
<td>P = 0.77, I² = 0%</td>
</tr>
<tr>
<td>Vomiting/Nausea</td>
<td>6</td>
<td>0.92 (0.42-2.04)</td>
<td>0.84</td>
<td>P = 0.53, I² = 0%</td>
</tr>
<tr>
<td>Fatigue/asthenia disorder</td>
<td>6</td>
<td>0.69 (0.44-1.09)</td>
<td>0.11</td>
<td>P = 0.31, I² = 17%</td>
</tr>
<tr>
<td>Anemia</td>
<td>5</td>
<td>0.34 (0.17-0.66)</td>
<td>0.002</td>
<td>P = 0.37, I² = 7%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>6</td>
<td>0.02 (0.01-0.06)</td>
<td><0.001</td>
<td>P = 0.44, I² = 0%</td>
</tr>
<tr>
<td>Alopecia</td>
<td>4</td>
<td>0.05 (0.01-0.40)</td>
<td>0.004</td>
<td>P = 0.21, I² = 36%</td>
</tr>
</tbody>
</table>

RR, risk ratio; CI: confidence interval.
Erlotinib vs. chemotherapy in NSCLC

gests that only the risk of rash is significantly increased, while fatigue/asthenia disorder, leukopenia and thrombocytopenia are decreased significantly with the EGFR-TKIs administration [34]. The different results between the two meta-analyses might be due to that Gregorc’s article includes researches not only related to erlotinib but also related to gefitinib.

To the best of our knowledge, this study is the first meta-analysis with a focus on the assessments between erlotinib and chemotherapy as second-line treatment for the advanced NSCLC. We made our best efforts to retrieve seven related articles and found no significant difference between erlotinib and docetaxel/pemetrexed for the second- or third-line treatment of advanced NSCLC patients. However, the results should be interpreted cautiously as all the included RCTs had performance (blinding of participants and personnel) bias.

In addition, several limitations should be discussed in this meta-analysis. First of all, the sample size was still small that only seven RCTs were analyzed in this study, of which two articles involving the comparison between erlotinib and docetaxel, and three articles concerning the comparison between erlotinib and pemetrexed were included.

The small number of the included studies might cause several deviations to the results. Secondly, there were significantly heterogeneities on the assessment of PFS and ORR, even in the subgroup analyses, which might distort the results as heterogeneity is one of the major concerns in meta-analysis for the validity [39]. Thirdly, the data about EGFR mutation status were limited. Although the EGFR mutation rate is only 16.7% in unselected patients [16], the patients with activating EGFR gene mutations are highly responsive to EGFR-TKIs, and that will significantly prolong the PFS [12-14]. Therefore, it’s better to collect and analyze the EGFR mutation data to obtain a more comprehensive result. Additionally, different methods for the EGFR mutation detection will also make a difference on the final outcomes, which was not mentioned in the present work. Last but not the least, several trials were not 100% second-line setting studies [29, 30], which might be another confounding factor for the significant heterogeneity. Therefore, more large-scale RCTs are needed to evaluate the best treatment in the second-line setting for advanced NSCLC.

In conclusion, we found a comparable result between erlotinib and docetaxel/pemetrexed on the PFS, OS and ORR for the second-line treatment of advanced NSCLC patients. Meanwhile, the administration of erlotinib might lead to a decreased risk of anemia, neutropenia and alopecia; but an increased risk of rash and diarrhea, compared with the chemotherapy.

Acknowledgements

This work was supported by the research foundation of Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine (2015ZY04). We would like to thank all respondents of the study and all the people who give the help for this study.

Disclosure of conflict of interest

None.

Address correspondence to: Qijian Cheng and Huanying Wan, Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, 999 Xiwang Road, Malu Town, Jiading 201801, Shanghai, China. Tel: +86-21-67888855; Fax: +86-21-64314162; E-mail: chengqijian@aliyun.com (QJC); hy_wan2013@163.com (HYW)

References

Erlotinib vs. chemotherapy in NSCLC

[38] Gao GH, Ren SX, Li AW, He YY, Chen XX, Li W, Zhou C. A meta-analysis of comparing EGFR-wt NSCLC patients with wild-type EGFR. ASCO annual meeting abstract: J Clin Oncol 2013; e19166.