Case Report

A novel germline mutation in SMAD4 gene in a hereditary hemorrhagic telangiectasia family

Changning Hao*, Haozhe Qi*, Shengjun Wu, Kejia Kan, Shuofei Yang, Xiangjiang Guo, Lei Lv, Lan Zhang

Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. * Equal contributors.

Received October 28, 2016; Accepted November 3, 2016; Epub June 15, 2017; Published June 30, 2017

Abstract: Hereditary hemorrhagic telangiectasia (HHT) is a rare autosomal dominant disorder characterized by telangiectases, epistaxis and visceral arteriovenous malformations. Recently, germline mutations, including mutations in the ENG, GDF2, ACVRL1 and SMAD4 genes, have been clarified to be involved in HHT patients. Here, we report a HHT family with a novel germline mutation in the SMAD4 gene. A 45-year-old man manifested massive hemoptysis and was angiographically proven to have multiple pulmonary arteriovenous malformations (PAVM). His mother and elder system also had histories of massive hemoptysis due to PAVM rupture. They also manifested mucocutaneous telangiectases and greater frequency of epistaxis. Subsequently, genetic screening in venous blood samples revealed a series of mutations in the 3'UTR of SMAD4 gene, which including 5 site mutations, 1 insertion and 2 deletions. To our knowledge, this mutation has not been previously described. Careful family history collection and genetic screening in suspicious patients are needed to identify HHT, and regular surveillance is recommended.

Keywords: Hereditary hemorrhagic telangiectasia, mutation, SMAD4

Introduction

Hereditary hemorrhagic telangiectasia (HHT) or Rendu-Osler-Weber syndrome is a rare autosome dominant disorder characterized by hamartomatous vascular development that leads to abnormal blood vessel formation in the skin, mucous membranes, and often occur in the organs such as lungs, liver, and brain. Patients manifest systemic mucocutaneous telangiectases, epistaxis and visceral arteriovenous malformations (AVMs) [1]. The etiology of the HHT is not yet understood. Recent data indicated that HHT might be associated with germline mutations of several genes, including ENG, GDF2, ACVRL1 and SMAD4 [1-3]. SMAD4, as a transcription factor, crucially regulates vascular-generating genes expression [2, 3]. Mutation of SMAD4 is a rare condition that contributes approximate 2% of HHT [2]. Here, we report a novel series of SMAD4 gene mutations in 3' UTR in a HHT family. To the best of our knowledge, this certain mutation pattern has not been described previously.

Case report

A 45-year-old male was admitted to ER due to a sudden onset of massive hemoptysis 1 day ago. He is a cocaine-abuser and consumed a pack of cigarettes per day. On collection of family history, his mother died from hemorrhagic shock caused by massive hemoptysis and elder sister also had a history of hemoptysis and accepted pulmonary lobectomy 8 years ago. He discharged more than 350 ml of blood during his stay in ER and had a poor response to hemostatic treatment. His hemoglobin level kept descending from 88 g/L to 68 g/L within 24 hours. Chest computer tomography angiogram (CTA) indicated multiple pulmonary arteriovenous malformations (PAVMs) located in whole right lobe and left inferior lobe (Figure 1A, 1B). Digital subtraction angiograph (DSA) was then performed to locate ruptured PAVM. Unfortunately, angiogram indicated that the hemorrhagic PAVM, which located in the middle right lobe, was unsuitable to be embolized (Figure 1C, 1D). The patient was then trans-
ferred to thoracic surgery department and accepted emergency right lobectomy. After hospitalized for additional 10 days, he was discharged in good condition.

A few days after discharge, the patient together with his elder sister, came to out-patient clinic for further consultation. On reviewing the intact medical history, we were aware of that patient’s nephew was also found an un-ruptured PAVM in routine health check-up 2 years ago and under regular follow-up (Figure 2A). His elder sister, who underwent lobectomy 10 years ago, manifested several clusters of angioectasis and increasing frequency of epistaxis (Figure 2B).

Based on the family history, signs and symptoms, we diagnosed them HHT. In order to confirm our diagnosis, we collected venous blood sample and performed polymerase chain reaction (PCR) to directly sequence the 4 HHT-related genes: ENG, ACVRL1, GDF2 and SMAD4 [2]. Sequenced genes were mapping with GRCh37/hg19 database by applying the Needle

Figure 1. Radiological images of the HHT patient. Computer tomography angiogram (CTA) reconstruction of chest scan (A, B) and catheter-directed angiogram (C, D) revealed multiple pulmonary arteriovenous malformations (PAVM) in patient’s lung.
Alignment software (CBI, Peking University). The phenotypes of ENG and ACVRL1 genes, which are much more common to cause HHT, were identical to wild type. Only 1 single point-mutation of GDF2 was detected in the 3' UTR (pG>A(1775), Figure 3A). On the other hand, 3 kinds of mutation patterns were found in the 3' UTR of SMAD4, including a 5 site mutations, 1 insertion and 2 deletions (Figure 3B). This finding refers to the mechanism of SMAD4 dysfunction mainly building on the transcription or translation obstacle and much likely to cause the vascular malformation in this family. The accurate location is listed in Table 1 and Figure 3.

Discussion

Hereditary hemorrhagic telangiectasia (HHT) or Rendu-Osler-Weber syndrome is an autosomal dominant disorder characterized by aberrant vascular development affecting approximate 1/10,000 in general populations [2]. HHT is clinically confirmed when an individual meets 3 or more clinical hallmarks: mucocutaneous telangiectases, epistaxis, visceral AVMs and a first degree HHT relative [1, 2]. With the absence of well-structured intervening capillary, direct artery-to-vein connection in lungs, spinal cord, brain and other organs would lead to AVM rupture in a certain circumstance. In this case, for instance, PAVM rupture was highly possible to be induced by pulmonary vessel spasm after cocaine inhalation. Moreover, epistaxis is most common feature and exhibits age-related penetrance [3], which is consisted with our observation in this family.

HHT is a genetically heterogeneous disorder caused by a number of genes involved in the transforming growth factor-beta (TGF-β) signaling pathway that regulates endothelial proliferation, differentiation, apoptosis, and migration [4, 5]. Four known genes are currently used for HHT genetic testing: ENG, ACVRL1, GDF2 and SMAD4 [1-3]. Pathogenic variants of these 4 genes occupies more than 85% of individuals who meet unequivocal clinical diagnostic criteria for HHT. ENG and GDF2 are two key components of the transmembrane glycoproteins serve as TGF-β receptor. Mutations of ENG and ACVRL1 genes account for the majority of HHT patients [2, 3]. According to McDonald and colleagues’ study, approximately 80% of individuals with HHT have a mutation in ENG and ACVRL1 genes [4]. Mutations of SMAD4 and GDF2, on the other hand, are much rarer patterns and occupy about 2% in HHT, respectively [2].

SMAD4 gene locates on chromosome 18q21.1 and contains 11 exons. Various mutations that cause SMAD4 loss-of-function would cause vascular-lineage cell malformation, epithelial hyperplasia and even carcinoma [9]. It has been clarified that he most common mutation of SMAD4 is a 4-base-deletion in exon 9 [7, 8]. Most reported SMAD4 mutations are small insertions, deletions or single base substitutions leading to nonsense, splicing or missense mutations [5, 9]. In the present case, the exon and intron region are identical to wild type. However, an unusual mutation pattern was
SMAD4 mutation in HHT

found in the 3’ UTR of SMAD4 gene that most likely to cause it loss-of-function.

SMAD4, as a transcription factor participates in TGF-β pathway, serves as a common partner downstream to other SMADs and regulates several gene expressions involved in vascular generation [10, 11]. Some researchers reported HHT caused by SMAD4 gene mutation would be more often to be associated with juvenile polyposis (JP) [4, 6], but others debated that there also existed JP-free HHT with SMAD4 mutation [12]. In the present case, we did not find colorectal polyps by enteroscopy (data not shown). Instead, the clinical hallmark of the present case is poor-structured PAVM and systemic mucocutaneous telangiectases. Above mentioned evidence indicates that HHT is inherited autosomal dominant disorder with considerable intrafamilial variability.

In summary, this case report describes a new SMAD4 gene mutation pattern in a HHT family. Careful family history collection, familiarity of diagnose criteria, and if necessary, genetic testing are needed to confirm suspicious HHT patients currently. For those diagnosed HHT patients, regular surveillance of potential ruptured AVM and malignancy is recommended.

Acknowledgements
This work was supported by the China National Natural Science Foundation (81500372 and 81500523), Shanghai Pujiang Program (15PJ-1405000) and International Research Cooperation Program, S&T committee of Shanghai (14430721400).

Disclosure of conflict of interest
None.

Address correspondence to: Drs. Changning Hao and Lan Zhang, Department of Vascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Pudong, Shanghai
SMAD4 mutation in HHT

References

