Review Article
Clinical significance of ADAM10 and ADAM17 in gastric and colorectal cancers: a systematic review and meta-analysis

Xuan Sun1, Yiming Wang2, Renshi Ma3, Wei Li3

Departments of 1Gastric and Colorectal Surgery, 3Vascular Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, China; 2Department of Oncology, Chongqing Cancer Institute, Chongqing 400030, China

Received November 1, 2016; Accepted February 16, 2017; Epub April 15, 2017; Published April 30, 2017

Abstract: Background: The expression and prognostic value of ADAM10 and ADAM17 in gastric and colorectal cancers remained controversial. We performed a meta-analysis of cohort studies to evaluate the clinical significance of ADAM10 and ADAM17 in gastric and colorectal cancers. Materials and methods: PubMed, Embase, Cochrane library database, VIP and CNKI were systematically searched. Cohort studies assessing the expression and prognostic value of ADAM10 and ADAM17 in gastric and colorectal cancers were included. Meta-analysis was performed using random-effect model. Results: Five cohort studies involving 1150 participants were included in the meta-analysis. Overall, higher expression of ADAM10 and ADAM17 were found in T3-4 cancer than T1-2 cancer (OR=0.29; 95% CI=0.21 to 0.40; P<0.0001), N-positive cancer than N-negative cancer (OR=4.36; 95% CI=2.25 to 8.45; P<0.0001), cancer with distant metastasis than cancer without metastasis (OR=0.09; 95% CI=0.02 to 0.37; P=0.0008) in patients with gastric cancer, but the expression of ADAM10 and ADAM17 showed no relationship with cancer grade (G3 versus G1-2, OR=0.75; 95% CI=0.55 to 1.03; P=0.07). While in patient with colorectal cancer, ADAM10 and ADAM17 showed higher expression in patients with G3 compared to G1-2 (OR=0.30; 95% CI=0.15 to 0.62; P=0.001), N-positive cancer patients than N-negative cancer patients (OR=23.53; 95% CI=6.88 to 80.47; P<0.0001), cancer with distant metastasis than cancer without metastasis (OR=0.10; 95% CI=0.02 to 0.60; P=0.01), but the expression of ADAM10 and ADAM17 demonstrated no connection with T category (T3-4 cancer versus T1-2 cancer, OR=3.53; 95% CI=1.01 to 12.41; P=0.05). Conclusion: ADAM10 and ADAM17 were reliable for determining the T category, N category, distant metastasis and tumor grade of gastric cancer and colorectal cancer, and they hold some promise in identifying the prognosis of digestive cancers.

Keywords: ADAM10, ADAM17, gastric cancer, colorectal cancer, meta-analysis

Introduction

Although treatments of digestive cancers (e.g. pancreatic cancer, esophageal cancer, gastric cancer and colorectal cancer) have been developed rapidly, they still result in a high mortality [1-3]. It is widely accepted that two mechanisms mediating the migration of cancer cells in the body are invasion and metastasis, during which tumor cells have the ability to penetrate the walls of blood and lymphatic vessels and secondary tumors are formed following the transportation of primary tumor cells to other tissues [4]. It is valuable and urgent to explore sensitive and specific markers of carcinogenesis to assess diagnostic and prognostic digestive system cancers.

A disintegrin and metalloproteinase 10 (ADAM10) known as a member of the ADAM (a disintegrin and metalloproteinase) family of transmembrane metalloproteinases, is involved in the RIPing and shedding of dozens of substrates, and induces cancer progression and inflammatory diseases [5]. ADAM10 has some proteolytic activity [6]. ADAM10 and ADAM17 show some potential in the cleavage of transmembrane protein Klotho that is involved in aging process [7]. ADAM17, also called tumor necrosis factor-alpha-converting enzyme, is responsible for the inflammation, tumor growth, and angiogenesis [8]. ADAM17 was found to shed various proteins for regulating responses to tissue injury, inflammation, and carcinogenesis, and these proteins mainly include growth
factors, receptors, and adhesion molecules [9, 10]. The unregulated expression of ADAM17 indicated a poor prognosis of various cancers and showed some association with tumor progression (e.g. breast, prostate, gastric, colorectal, hepatocellular, and ovarian cancer) [11].

Previous studies showed that ADAM10 and ADAM17 were found to be significantly increased in T3-4 category compared to T1-2 category for patients with gastric and colorectal cancers [12, 13]. Consistently, ADAM10 and ADAM17 expression of N-positive cancer patients was revealed to substantially be improved compared to that of N-negative cancer patients [12, 14].

In contrast to this promising finding, however, some relevant trials showed that ADAM10 and ADAM17 expression showed no association with T category, N category and tumor grade in gastric and colorectal cancers [12, 15, 16]. Considering these inconsistent results, we therefore conducted a systematic review and meta-analysis of cohort studies to evaluate the diagnostic and prognostic value of ADAM10 and ADAM17 in gastric and colorectal cancer.

Materials and methods

Search strategy

We performed this meta-analysis in accordance with the Meta-analysis of Observational Studies in Epidemiology (MOOSE) statement [17]. PubMed, Embase, Cochrane library database, VIP and CNKI from January 1980 to September 2016 were searched to identify relevant studies, without language restrictions. Search terms included “ADAM10” or “ADAM17”, and “gastric cancer” or “colorectal cancer” or “gastrointestinal cancer”. In addition, we reviewed the reference lists of retrieved papers and recent reviews to identify other potentially eligible studies that we had not searched.

Selection criteria

The inclusive selection criteria were as follows: (a) study design: cohort study; (b) study population: patients with gastric, or colorectal cancer; (c) comparison intervention: different TNM stages (Grade 1-2 versus Grade 3, T1-2 versus T3-4, N-positive versus N-negative, and M0 versus M1); and (d) outcome measure: expression of ADAM10 or ADAM17. In the case of duplicate data publication (studies with overlapping samples), we only included the most informative article or complete study to avoid duplication of information.

Data extraction and quality assessment

A standardized data collection form was used to extract the following information from each included article: first author, publication year, sample size, numbers, population characteristics, type of study design, T category, N category, distant metastasis and tumor grade. When necessary, we contacted the authors of included studies for additional information.

We assessed the methodological quality of each study on 8 items used in the Newcastle-Ottawa Scales (NOS) [18]. We assigned the risk of bias categories based on the number of NOS items judged inadequate in each study, as follows: low risk of bias (0-1 inadequate item); medium risk of bias (2-3 inadequate items); high risk of bias (over 3 inadequate items); very high risk of bias (no description of methods). Two investigators independently conducted the study selection, data extraction and quality assessment, and a third investigator was consulted to resolve any discrepancies.

Statistical analysis

Odd ratio (OR) was used as a common measure of the association between ADAM10 (or ADAM17) expression, and the TNM stages of gastric and colorectal cancers across studies. All meta-analyses were performed using random-effects models with DerSimonian and Laird
weights. Heterogeneity was tested using the Cochran Q statistic (P<0.1) and quantified with the I² statistic, which described the variation of effect size that was attributable to heterogeneity across studies. An I² value greater than 50% indicated significant heterogeneity. To explore the possible source of heterogeneity and to examine the influence of various clinical factors on the overall risk estimate, we further carried out prior subgroup analyses according to gastric or colorectal cancer. We also investigated the influence of a single study on the overall pooled estimate by omitting one study in each turn. Owing to the limited number (<10) of included studies, publication bias was not assessed. P<0.05 in two-tailed tests was considered statistically significant. All statistical analyses were performed with Review Manager Version 5.3 (The Cochrane Collaboration, Software Update, Oxford, UK).

Results

Literature search and study characteristics

Figure 1 showed the search strategy and selection process of this meta-analysis. In all, 384 studies in the first search seemed to be potentially relevant. 125 duplicates were removed. A total of 238 studies were excluded (irrelevant subjects) on the basis of initial screening of the titles and/or abstracts. And 3 reviews were removed and 3 studies were excluded for not providing enough data for analysis. The remaining 5 articles were included in the meta-analysis and there were two English papers and three Chinese papers [12-16].

Table 1 demonstrated the characteristics of the included studies. All of them were from China. Furthermore, 3 studies focused on colorectal cancer, and 2 focused on gastric cancer. A total of 1150 patients were included. The TNM stage and tumor grade was reported in 5 and 4 studies, respectively. Furthermore, high expression and low expression of ADAM were defined in 2 studies. In this paper, we defined the positive expression of ADAM as high expression in other 3 studies after carefully reading the original papers and thus take them for meta-analysis. There was just one paper reporting the overall survival of 5 years. The NOS score of the included studies ranged from 7 to 8, as shown in **Table 2**.

Primary outcome: correlation of ADAM10 or 17 and cancer grade (histologic differentiation, G1-2 vs G3)

This outcome data was analyzed with a random-effect model, the pooled estimate of the
ADAM10 and ADAM17 for gastric and colorectal cancers

Two included studies suggested that ADAM10 and ADAM17 showed no associated with increased cancer grade of gastric cancer (G3 versus G1-2, OR=0.75; 95% CI=0.55 to 1.03; P=0.07), with no heterogeneity among the studies (I²=0%, heterogeneity P=0.76, Figure 2).

Sensitivity analysis

No heterogeneity was observed among the included studies for the correlation of ADAM10 (or 17) and cancer grade after the subgroup analysis, as showed by both I²=0. Thus, we did not perform sensitivity analysis by omitting one study in each turn to detect the source of heterogeneity.
Secondary outcomes

Compared with patients with T1-2, ADAM10 and ADAM17 were found to be expressed higher than patients with T3-4 of gastric cancer (OR=0.29; 95% CI=0.21 to 0.40; P<0.0001). However, their expression showed no significant difference in colorectal cancer comparing T1-2 and T3-4 (OR=3.53; 95% CI=1.01 to 12.41; P=0.05, Figure 3).

N-positive patients demonstrated increased expression of ADAM10 and ADAM17 for gastric cancer (OR=4.36; 95% CI=2.25 to 8.45; P<0.0001) and colorectal cancer (OR=23.53; 95% CI=6.88 to 80.47; P<0.0001, Figure 4).

Moreover, ADAM10 and ADAM17 were revealed to be associated with increased risk of distant metastasis (M0 versus M1) in gastric cancer (OR=0.09; 95% CI=0.02 to 0.37; P=0.0008),...
and colorectal cancer (OR=0.10; 95% CI=0.02 to 0.60; P=0.01, Figure 5).

Discussion

To the best of our knowledge, this is the first meta-analysis to explore the association between ADAM10 (or ADAM17) and TNM stages in patients with gastric cancer and colorectal cancer. Our meta-analysis suggested ADAM10 and ADAM17 were found to be increased expression in patients with T3-4 than T1-2, N-positive patients than N-negative patients, patients with distant metastasis than patients without metastasis for gastric cancer. Except T category in colorectal cancer, ADAM10 and ADAM17 resulted in improved expression in patients with G3 than G1-2, N-positive patients than N-negative patients, patients with distant metastasis than patients without metastasis.

ADAM10 can cleave the extracellular domain of the neuronal cell adhesion molecule L1-CAM and is involved in beta-catenin-TCF signaling pathway. Previous studies revealed that ADAM10 overexpression was associated with digestive cancer (e.g. gastric cancer, colon cancer and liver cancer) and metastasis [19-21]. It is known that ADAM17 serves as an indispensable regulator of carcinogenesis and it sheds the growth factors responsible for tumor progression and growth [22]. These growth factors mainly included transforming growth factor-alpha, amphiregulin, heparin-binding epidermal growth factor-like growth factor and epiregulin [23, 24]. ADAM17 overexpression was found to have favorable influence on the progression of breast cancer, pancreatic ductal adenocarcinoma and gastric cancer etc [21, 25, 26].

TNM stage, and lymph node and distant metastasis were thought to be the important prognostic factors for gastrointestinal cancer [27]. The results of our meta-analysis strongly suggested that ADAM10 and ADAM17 could serve as independent and important prognostic factors for gastric and colorectal cancers. In addition, other factors significantly affecting the survival of the patients included age, tumor size, location, depth of invasion, TNM stage, vessel invasion and lymph node metastasis. Mean survival time of gastric cancer patients with low ADAM10 and ADAM17 expression was found to be longer than patients with their high expression [12, 13]. These results were consistent with previous studies that correlated elevated expression of ADAM17 with the poor prognosis in many tumors. ADAM17 showed significantly increased expression in high-grade tumors than low-grade tumors including breast cancer, gallbladder carcinoma and esophageal adenocarcinoma. And their high expression resulted in a significantly shorter overall survival time than the low expression [28-30].

Several limitations should be taken into account. Firstly, our analysis is based on only five cohort studies and two of them have a relatively small sample size (n<100). Overestimation of the treatment effect is more likely in smaller trials compared with larger samples. Next, all the five studies were from China, and it was believed that there were distinct site differences. We tried to identify the relationship between the 5-year survival rate and ADAM expression, but only one study reported these data. Finally, some unpublished and missing data might lead bias to the pooled effect.

Conclusions

ADAM10 and ADAM17 could serve as independent and significant prognostic factors for patients with gastric and colorectal cancers.

Acknowledgements

This work is supported by National Natural Science Foundation of China grant (No. 81402374).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Wei Li, Department of Gastric and Colorectal Surgery, The First Hospital, Jilin University, Changchun 130021, Jilin, China. E-mail: weil8308@jlu.edu.cn

References

ADAM10 and ADAM17 for gastric and colorectal cancers

