Original Article
High-intensity focused ultrasound ablation: an in vitro agarose gel model

Sen Yang1,2,4*, Yi-Jing Chen3*, Ran Cui1, Hua-Xin Zhao2, Yu Zhao1, Zhu-Qing Liu1, Yi Yu1, Xiao-Yan Shao1, Qing Xu1,2

1Department of Oncology, Shanghai Dermatology Hospital, Shanghai, China; 2Department of Medical Oncology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China; 3Department of Pathology, Traditional Chinese Medicine Hospital of Kun Shan, Suzhou, Jiangsu, China; 4Department of General Practice, Yangpu Hospital, Tongji University, Shanghai, China. *Equal contributors.

Received June 6, 2016; Accepted July 24, 2017; Epub November 15, 2017; Published November 30, 2017

Abstract: Purpose: There are many ultrasound studies involve the use of tissue-mimicking materials to research phenomena in vitro and predict in vivo biological effects. The goal of our study was to establish a typical agarose gel model of high-intensity focused ultrasound (HIFU) treatment for empirical study. Materials and methods: In this study, the model consists of human pancreatic tissues embedded in an agarose gel. The Sprague Dawley (SD) rat liver tissues were encapsulated in agarose gel and ablated by HIFU. The changes in vitro after ablation were assessed using ultrasonography, pathological examination, and histochemical staining. Results: After HIFU treatment, the results showed that the ultrasonic echo signal of the ablating region was strong, and the necrosis at the center of the ablation was monitored using hematoxylin and eosin (HE) staining. Shrinkage, chromatin condensation, nuclear condensation and fragmentation of the mouse liver cancer cells were assessed during pathological examination. Acid phosphatase (ACP) and succinic dehydrogenase staining (SDH) were negative in the experimental group. Discussion: Our study demonstrated that agarose model was appropriate for HIFU ablation in in vitro human tissues. The in vitro model may provide a useful tool for studying ablation induced by HIFU and facilitate further investigation of HIFU in anticancer therapeutics.

Keywords: High-intensity focused ultrasound, in vitro model, agarose gel, ablation

Introduction

HIFU induces coagulative necrosis of tumors without any skin damage, and is a truly noninvasive modality [1]. In addition to thermal ablation, changes in cellular and molecular responses occurred in the local environment of HIFU-ablated animal models [2].

Currently, in vitro animal model ablation is the most common modality for HIFU treatment. High-intensity focused ultrasound with pulmonary flooding generated a thermal effect in vivo in a porcine model of lung tumor [3]. Tumor-bearing mice were injected with micro-bubbles via tail vein and treated with HIFU to study the in vivo effect of HIFU on breast cancer cell lines [4]. A number of models have been used to simulate thermal lesion formation caused by ultrasound-induced heating in high-intensity focused ultrasound (HIFU) [5, 6]. While these can accurately mimic the response of soft tissues to heating, they are unable to precisely visualize or quantify mechanical ablation caused by HIFU compared with human tissues.

A human tissue model for measurement of HIFU treatment would be valuable in both ultrasound imaging and therapy. It could verify whether a given transducer and set of acoustic parameters are capable of causing therapeutic effect. However, the use of HIFU in in vitro human models is limited, because most of the patients who receive HIFU treatment are contra-indicated for surgery, and tissue samples are not easily available for study. We, therefore, developed a novel agarose gel model to investigate HIFU treatment in human tumor tissue samples. In this study, an in vitro model of liver for HIUF ablation was established by encapsulating liver tissue in agarose gel.
**Materials and methods**

**Tissue preparation**

Eighteen SD rats aged between 6 and 8 weeks were purchased from the Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, and raised in the central laboratory of Shanghai Tenth People's Hospital. After euthanasia, the rat liver tissues were divided randomly into three groups, six in each group, numbered 1, 2 and 3, respectively. Fresh human pancreatic cancer tissue was obtained from a department of pathology and placed in 0.9% saline solution at room temperature. All experiments were conducted within 6 hours of harvest. Experiments and animal care were carried out in compliance with the guidelines for the care and use of laboratory animals recommended by the Ministry of Science and Technology of the People's Republic of China [7].

**HIFU**

HIFU ablation was performed using a HIFU tumor therapy system (Model JC type, Chongqing Haifu Tech Co., Ltd, Chongqing City, China) comprising a firing system located in a degassed water tank, an imaging system consisting of an ultrasound scanner coupled with a stereotaxic localizing arm, and a computer-controlled system controlling the firing sequence and the three-dimensional movement of the firing head [Martin, 2014 #81; Marinova, 2016 #98] [8, 9].

**Gel acoustics**

Ultrasonic attenuation coefficient (UAC) is a parameter for acoustic propagation. The larger the value of UAC, the greater the sonic energy decrease [10, 11]. UAC was calculated using the insert-substitution method of GBT15261-2008 as follows (1) [12]:

$$\alpha = \frac{20}{d_1 - d_x} \log(\frac{A_x}{A_1}) + \alpha_w$$  \hspace{1cm} (1)

Where $\alpha$ represents the UAC of tested material, and $d_1$ is the thickness of the thicker sample, and $d_x$ denotes the thickness of the thinner sample. $A_x$ is the signal amplitude of thicker samples while $A_1$ is the signal amplitude of thinner samples. The $\alpha_w$ is the corrected value, and $\alpha$ and $\alpha_w$ are indicated as dB/cm. The units of $d_1$ and $d_x$ are cm, and the $A_x$ and $A_1$ are expressed in volts.

**Preparation of in vitro agarose gel**

Hydrogel was prepared by dissolving agarose (1% wt) in aqueous solvent at a temperature of 95°C. Gelation occurred when the temperature of this solution was lowered to room temperature. Briefly, rat liver tissues were encapsulated in 1% agarose. The agarose molds were allowed to gel at 37°C for 10 min and loaded into agarose scaffolds.

**HIFU ablation**

Eighteen SD rats were euthanized after fasting for 24 h. Liver tissues were obtained and evenly divided into three groups (blank, control, and experimental), and were loaded immediately on the scaffolds. The HIFU ablation was compliant with the guidance of the National Standard of China and described previously [13, 14]. The blank group of liver tissues was left untreated, while the control and experimental groups were encapsulated in agarose gel. The experimental group was ablated with the HIFU system (Model JC type, Chongqing HaifuTech Co., Ltd, Chongqing City, China) with a 10 cm diameter and 161 mm focal length was used as a therapy transducer. The transducer operates at 0.99 MHz, and is driven by a class D amplifier with matching network developed in our lab. The transducer was positioned in a tank of degassed, filtered water, and the focus was aligned to the cortex of the rats liver sample in plastic tubes filled with agarose gel submerged in the tank. A real-time ultrasound imaging device was used to locate the liver tissue as the predesigned target. Ultrasound was fired at a 3×3 grid of points sequentially, with 2 mm spacing between points. The total exposure time at each point was 5 seconds. The parameters used were 1.03 MHz, 400 W. This pattern was chosen to avoid single spot treatments so that lesions were more easily located in tissue for histological sectioning. Eventually, the entire target region was covered by HIFU, leading to coagulation necrosis of the whole target region. During the therapeutic process, real-time evaluation of the profile of tissue damage in the model was conducted using the computer system and graphic analysis of the target field and the hyperecho of the tissues.
In vitro agarose gel model

Table 1. Acoustic properties of PAA gel at various agarose powder concentrations

<table>
<thead>
<tr>
<th>Agarose gel concentration</th>
<th>Sound speed (m/s)</th>
<th>Acoustic attenuation (dB/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5%</td>
<td>1503.88±1</td>
<td>0.04±0.01</td>
</tr>
<tr>
<td>1.0%</td>
<td>1503.19±1</td>
<td>0.07±0.02</td>
</tr>
<tr>
<td>2.0%</td>
<td>1503.31±1</td>
<td>0.11±0.01</td>
</tr>
<tr>
<td>4.0%</td>
<td>1510.05±1</td>
<td>0.20±0.01</td>
</tr>
<tr>
<td>8.0%</td>
<td>1526.50±1</td>
<td>0.46±0.02</td>
</tr>
</tbody>
</table>

Values are expressed as mean ± SD.

Figure 1. Gel acoustic characterization. Attenuation coefficient and agarose gel concentration. x coordinate representing agarose gel concentration (%), and y coordinate indicating the sound attenuation coefficient (dB/cm), with the trend line R²=0.990. The acoustic attenuation coefficient increased with increasing concentration of agarose gel.

Results

Gel acoustics

The acoustic properties of our agarose gel at various agarose concentrations are summarized in this study (Table 1). The gel concentrations ranged from 0.5% to 8%. Gels with higher concentrations of agarose showed a higher acoustic attenuation (Figure 1). A significant correlation was found between the acoustic attenuation and agarose concentration, with a correlation coefficient of 0.990 (P<0.01). The magnitude of the attenuation coefficient was controlled easily between 0.03 and 0.5 (dB/cm), by varying the concentration of agarose.

In vitro agarose gel model and HIFU ablation

The agarose molds were allowed to gelate at 37°C for 10 min before loading on agarose scaffolds (Figure 2A). After HIFU treatment, changes in coagulation necrosis in the ultrasonic echo of the ultrasound model were clearly found in the center of the ablating region, and the intensity of the echo grew stronger after ablation (Figure 2B).

Pathological manifestations

After HIFU treatment, pale coagulation necrosis was easily identified in all the experimental liver samples. Normal liver tissues were red, whereas tissues of coagulation necrosis were white after TTC staining. In the experimental group, there was a sharp boundary between HIFU necrosis and viable tissue (Figure 2C).

Light microscopy

Under a light microscope, the following necrotic features were observed in the livers of experimental group: karyopycnosis and nuclear frag-
In vitro agarose gel model

Figure 2. HIFU ablation. A. The in vitro model was loaded on agarose scaffolds. B. Changes in ultrasonic echo of the target regions after HIFU. *denotes the view of the coagulated lesion. C. These models were: blank, control and experimental groups (from left to right), respectively; TTC staining of liver tissues after HIFU. Coagulation necrosis (black arrow) was obvious and the white arrow showed normal pancreas. The boundary was clear.

Human pancreatic cancer tissue in HE staining

After HIFU treatment, the ablation area (A) showed homogeneous red dye and no cell structure, no ablation area (C) had clear cell structures and nucleolus, but the cells were arranged disorder. The junction between the two areas (B) could be seen the fuzzy structure, and nuclear pale staining (Figure 4).

Discussion

The ideal treatment for localized cancer should result in complete cell death without collateral damage [15, 16]. Previous researchers have directly observed the interaction of cavitation with cells, either with liquid and gel cell suspensions [17].

The novelty of our model as follows: we found that the tissue model described in this study can be used to directly observe cavitation and the resulting damage as it would occur in solid soft tissues [18]. Besides, the model provides a more controllable method to study the effects of different ultrasound parameters and transducers than in vivo tissue.

Agarose is a polysaccharide with alternating copolymers of 1,4-linked 3, 6-anhydro-α-l-galactose and 1,3-linked β-D-galactose. It has been commonly used as a gel for electrophoresis of nucleic acids in the laboratory [19, 20]. The agarose gel is stable and does not swell at constant temperature or re-liquefy until heated to 65°C [21]. Besides, it is easy to manufacture reproducibly. It is user-friendly, and amenable to large-scale use [22].

Acoustic attenuation coefficient demonstrated the ability of the media to transfer energy. A higher agarose gel concentration resulted in greater acoustic attenuation coefficient [23, 24]. Therefore, to reduce the acoustic attenuation of agarose gels, low concentrations of agarose gel are better than higher levels. However, if the agarose gel concentration is low, it is very soft and fragile, and the acoustic attenuation coefficient of 1% agarose gel is 0.073±0.001 dB/cm [25]. The human tissue sound attenuation coefficient is about 0.5 to 1.5 dB/cm/MHz [26]. It is far less than the human tissue attenuation coefficient and the ultrasonic attenuation is negligible. Furthermore, in preliminary experiments [27], a polypropylene model was used after HIFU treatment. Several bubbles were observed in the central rubber block, and the polypropylene plastic was destroyed, while 1% agarose gel model after HIFU treatment showed no reaction. These show similar appearance to HIFU treatment seen previously in agarose gels [28]. Therefore, 1% agarose gel was the optimal choice.

In this study, we selected the rat liver tissue as a sample. In vitro liver tissue wrapped with 1% agarose gel was exposed to HIFU. The patho-
In vitro agarose gel model

Figure 3. Light microscopy. Presentations of liver in the experimental group (C, F, I) under light microscope after HIFU (H&E, SDH, ACP×200). An apparent boundary was seen between normal and target tissues. However, no differences were found between the blank (A, D, G) and control groups (B, E, H). The cellular structures were normal.

Figure 4. HE staining in human pancreatic cancer tissue. A: Coagulation necrosis area; B: The border area, cellular structure fuzzy, nuclear lightly stained; C: No ablated area, the cell structure was still visible and the nucleolus was clear, but the arrangement of cells were disordered (H&E×200).

Logical section was observed under a microscope, which revealed that agarose gel had no effect on the biological properties of the tissue and HIFU ablation. Furthermore, we used human pancreatic cancer tissue to conduct experiments to confirm that this model was suitable for HIFU therapeutics, and this result was consistent with previous studies of in vivo tissue histotripsy lesions [29].

The model was simple and user-friendly facilitating tissue location and control. Each experiment in this model was treated with HIFU irradiation and ablative attenuation consistently, reducing the experimental error between the groups and any damage to the operator. Moreover, the gel model should be relatively simple and inexpensive to prepare, as one purpose is to avoid the costs associated with using experimental animals, and the experimental materials were wrapped in agarose gel, which prevented contamination of the tissue. Most importantly, this model was fixed by the bracket, obviating the need for manual handling.
In vitro agarose gel model

However, additional trials are underway to ascertain the utility of agarose gel model. Besides, it is essential to determine the histological changes and molecular mechanisms of the agarose gel models. A number of preliminary studies suggested the reliability of the agarose model, which may facilitate additional studies investigating the mechanisms of carcinogenesis.

In conclusion, the novel agarose gel model is a safe and effective in vitro experimental tool for the investigation of HIFU anticancer therapeutics.

Acknowledgements
This article is supported by the National Natural Science Foundation of China (NO 81372749).

Disclosure of conflict of interest
None.

Address correspondence to: Dr. Qing Xu, Department of Medical Oncology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, 301 Middle Yanchang Road, Zhabei District, Shanghai 200072, P. R. China. Tel: +86 188 1787 9518; E-mail: qingxumd@aliyun.com

References
In vitro agarose gel model


