Simulated postoperative weight-bearing after fixation of a severe osteoporotic intertrochanteric fracture

Shuang Li1*, Gui-Xin Sun2*, Shi-Min Chang1, Chen-Song Yang2, Yan Li3, Wen-Xin Niu4, Li-Zhi Zhang1, Chi Zhang5

1Department of Orthopaedic Surgery, Yangpu Hospital, Tongji University, Shanghai, P. R. China; 2Department of Traumatology, Shanghai East Hospital, Tongji University, Shanghai, P. R. China; 3Shanghai University of Sport, Shanghai, P. R. China; 4Yang Zhi Rehabilitation Hospital, Tongji University, Shanghai, P. R. China; 5Department of Orthopaedic Surgery, The First Rehabilitation Hospital of Shanghai, Shanghai, P. R. China. *Equal contributors.

Received January 11, 2017; Accepted March 2, 2017; Epub May 15, 2017; Published May 30, 2017

Abstract: Unstable intertrochanteric fractures in elderly patients are often associated with a high rate of postoperative complications. The operative procedure used has a great influence on patient outcome, even going so far as to influence mortality rates. Postoperative weight-bearing is also a controversial issue in terms of early rehabilitation and fracture healing. This study uses biomechanical tests and finite element analyses to evaluate the stability of severe osteoporotic intertrochanteric fractures fixed with an Asian proximal femur intramedullary nail anti-rotation system (PFNA-II). 17 synthetic femoral bones were used for simulating the fracture pattern (AO/OTA type 31-A2) and subsequent fixation. Acetabular loading was manually increased in 100 N increments from 200 N to 1800 N, or until the point of failure. The load applied and number of cycles to failure were recorded and used as inputs to the finite-element analysis. The femur-implant construct had a maximum load to failure of approximately 900 N. The results also revealed the head part had a relative varus displacement to the shaft part. The vertical displacement of the head part is 9.30±0.38 mm (range 9.96-8.91 mm) and transversal displacement is 5.21±0.26 mm (range 5.64-4.91 mm). For securing unstable intertrochanteric fractures, implants are typically designed to substitute as a major weight-bearing structure and to immobilize the fracture. This is particularly important in osteoporosis bone, where the bone is already weakened and susceptible to further damage. This study found that an early weight-bearing load of 900 N (1.45 times body weight) can be recommended for postoperative rehabilitation.

Keywords: Intertrochanteric fracture, finite-element analysis, biomechanical test, proximal femoral nail anti-rotation, PFNA-II, postoperative weight bearing

Introduction

As most healthcare systems across the world try to cope with an aging population, the incidence of osteoporosis and subsequent joint fracture is escalating. 125,000 intertrochanteric fractures are recorded per year in the United States, and this is expected to reach 500,000 by 2040 [1]. As such, intertrochanteric fractures are a worldwide public health issue with devastating consequences for both patients and their families [2, 3]. Invasive intervention (i.e. an operation) is currently the primary, and most successful, method for treating such fractures. However, the choice of procedure and the use of postoperative weight bearing are still controversial. Limited weight bearing reduces mechanical failure, but reduce the patient mobilization [4-6].

The proximal femoral nail anti-rotation (PFNA) system is an intramedullary nail implant designed by the AO/ASIF foundation [7]. As implant designs have improved and demonstrated greater long-term success, such helical blade implants have gradually become more popular and have gained acceptance among trauma surgeons. Nevertheless, implant failure and complications are not uncommon in clinical practice. To avoid the complications, delaying the weight loading or limited weight bearing is the alternative choice for the surgeons and the patients [8].

There is a clear lack of biomechanical and finite element data in the literature to either support or discourage immediate postoperative weight bearing of osteoporotic intertrochanteric fractures. Therefore, the purpose of this investiga-
Intertrochanteric fracture postoperative weight-bearing


The proximal femur was opened using a conical reamer to gain access to the intertrochanteric fossae (A). The intramedullary nail was then placed into the canal (B). Next, the helical blade is threaded through an opening in the nail and forcibly inserted into the femoral head (C). A distal locking screw holds the blade in place and prevents backward migration (D).

Figure 1.

The proximal femur was opened using a conical reamer to gain access to the intertrochanteric fossae (A). The intramedullary nail was then placed into the canal (B). Next, the helical blade is threaded through an opening in the nail and forcibly inserted into the femoral head (C). A distal locking screw holds the blade in place and prevents backward migration (D).

Figure 1. The proximal femur was opened using a conical reamer to gain access to the intertrochanteric fossae (A). The intramedullary nail was then placed into the canal (B). Next, the helical blade is threaded through an opening in the nail and forcibly inserted into the femoral head (C). A distal locking screw holds the blade in place and prevents backward migration (D).

Materials and methods

General study design

In this study, the PFNA-II system was implanted in synthetic femoral specimens and its performance evaluated using biomechanical tests and numerical analyses. The tests aimed to gauge the stability of fixation and to investigate the short-term behaviors of the osteoporotic fracture fragments. The failure strength of the osteoporotic-femur-implant construct was then used as the applied load in the FEA fatigue analyses to simulate instrumentation of about three months. The numerical results aim to demonstrate the long-term stability and life of the implant-bone construct.

In vitro biomechanical tests

The method is based extensively on those given in parts 3 and 4 of ISO 7206 (ISO 7206-
Intertrochanteric fracture postoperative weight-bearing

6:1992 (E)), which measure the endurance properties of the femur bone and hip joint implant under loading conditions that include a compression of load. The sawbones used in the biomechanical tests were large left fourth-generation composite femurs (model 1130-130, Sawbones AB, Malmo, Sweden). The length from the top of the trochanter to the distal condyle is 45 cm and the cortical walls are 3 mm to 4 mm thick. The density of the open cell cancellous bone is approximately 0.08 g/cm³ and the cortical bone is 0.32 g/cm³. The T score was -3.0 so as to simulate a severely osteoporotic bone [9]. The specimens were osteotomized and fixed by a senior orthopedic surgeon using the Asian proximal femur intramedullary nail antirotation system (PFNA-II WG, WEGO ORTHO Corp., China). Intertrochanteric fractures (OTA 31-A2) were recreated by means of osteotomies performed with a guided handsaw and a cutting template [10]. The cutting template assured the reproducibility of the fractures.

Figure 2. Set up of the MTS system, testing specimens, and fixtures. Specimen implanted with PFNA-II in the frontal plane (A), in the sagittal plane (B) and in the posterior plane (C). Loading study is conducted using a servo hydraulic machine (D).

Figure 3. Schematic of the experimental set up of the MTS system. Four points on the femur specimen are shown. Point ‘a’ is on the femoral head and Point ‘b’ is on the distal end of the bone. Point ‘c’ is above the fracture line and Point ‘d’ is below the fracture line.
Implantation followed the recommended intramedullary reaming technique for the PFNA-II. The proximal femur was opened using a conical reamer to gain access to the intertrochanteric fossae. The intramedullary nail of length 200 mm was then placed into the canal. Next, the helical blade is threaded through an opening in the nail and forcibly inserted into the femoral head. A distal locking screw holds the blade in place and prevents backward migration. The fracture is reduced so no visible gaps remain between the fragments (Figure 1A-D).

Finite element analyses

The saw bone models used for biomechanical testing described above were placed in a CT scanner prior to implantation. This allowed reconstruction of complete and identical femur models for finite element analysis. The slice thickness of the CT images was 1.25 mm, with a resolution of 512x512 pixels per image (DICOM format). The DICOM images were imported into Mimics 18.0 software (Materialise N.V., Belgium) to outline the inner and outer contours of the cortical bone. A threshold of 600 Hounsfield units was used to define the boundaries of the cortical shell and cancellous core [14]. The distal end was constrained in all directions in a self-cure denture base material. The angles between the compression force and the bone shaft axis were 13° in adduction in the frontal plane and 8° in the sagittal plane to simulate anatomical loading during single-leg stance [15] (Figure 4A, 4B).

A CAD model of the PFNA-II system was created according to the WEGO ORTHO Corporation’ specifications using Solidworks 2014 (Dassault Systems Solid-works Corp., USA). This system
uses a helical blade with large circumferential contact area for stable fixation (Figure 4C). The PFNA models were implanted in the femurs using Abaqus 6.14 (Dassault Systems Solidworks Corp., USA). The Young's modulus was set at 17,000 MPa for cortical bone and 260 MPa for cancellous bone [16]. The PFNA implant was assigned material properties of TiAl6V4, with a Young's modulus of 110,000 MPa and Passion’s ratio was set to 0.33 [16] (Table 1). All materials were assumed homogeneous, isotropic and linear elastic. Friction coefficients were taken as 0.46 for bone-bone interactions, 0.42 for bone-implant interactions and 0.2 for implant-implant interactions [17] (Figure 5). Model convergence was achieved with a cell size of 2.0 mm, whereby the variance ratio of the model stiffness and von Misses stress was less than 2%. The final implant model had 5,455 nodes and 21,711 elements, and the final femoral model had 45,831 nodes and 209,175 elements.

The femur-nail construct was then loaded from 200-1800 N in 100 N increments to calculate the maximum principal stresses. The subsequent fatigue analysis was based on the stress-life method (S-N method). ODB files generated from the Abaqus simulation were then imported into Fe-safe 6.5 (Dassault Systems, Solidworks Corp., USA). 250,000 loading cycles were chosen to simulate instrumentation for three months [17]. The distribution of the equivalent von Mises stress and LOG (Life-Repeats) of the femur and implant were used to predict damage accumulation in the femur over time.

Statistical analysis

Descriptive statistics are used to describe the basic features of the data in the study, and the data was shown as Mean ± SD (n=17). Experimental and numerical data was analyzed using OriginPro 8.5 (OriginLab Corporation, MA, USA) and their coefficients of correlation calculated.

Results

Biomechanical tests

All experimental displacement results of the femur-implant constructs are shown in Table 2.
Intertrochanteric fracture postoperative weight-bearing

Table 2. Vertical displacement, transversal displacement and mean loading cycles of the assembly in the invitro biomechanical tests

<table>
<thead>
<tr>
<th>Cyclic load (N)</th>
<th>Vertical Displacement (mm)</th>
<th>Transversal Displacement (mm)</th>
<th>Loading cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>200~200</td>
<td>8.91</td>
<td>4.91</td>
<td>250000</td>
</tr>
<tr>
<td>200~300</td>
<td>8.93</td>
<td>4.95</td>
<td>250000</td>
</tr>
<tr>
<td>200~400</td>
<td>8.99</td>
<td>4.97</td>
<td>250000</td>
</tr>
<tr>
<td>200~500</td>
<td>9.04</td>
<td>5.12</td>
<td>250000</td>
</tr>
<tr>
<td>200~600</td>
<td>9.22</td>
<td>5.23</td>
<td>250000</td>
</tr>
<tr>
<td>200~700</td>
<td>9.57</td>
<td>5.34</td>
<td>250000</td>
</tr>
<tr>
<td>200~800</td>
<td>9.75</td>
<td>5.53</td>
<td>250000</td>
</tr>
<tr>
<td>200~900</td>
<td>9.96</td>
<td>5.64</td>
<td>250000</td>
</tr>
<tr>
<td>200~1000</td>
<td>-</td>
<td>-</td>
<td>12204</td>
</tr>
<tr>
<td>200~1100</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>200~1200</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200~1300</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200~1400</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200~1500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200~1600</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200~1700</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200~1800</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

No visible nail or screw cracking or cut-out could be seen when placed under loads of up to 900 N. However, the bone failure did occur at 1000 N in the biomechanical tests (Figure 6A, 6B).

For the biomechanical tests, the vertical displacements and transversal displacements of all constructs are listed in Table 2 and Figure 7. Displacement can be seen to increase with increasing loads, with an average final displacement of 9.30±0.38 mm in vertical direction and 5.21±0.26 mm in horizontal, respectively. The mean number of cycles to failure for the specimen loaded to 1000 N was 12,204 cycles, with the specimens (200-900 N) being capable of withstanding greater than 250,000 cycles.

Finite-element analyses

The von Misses stress peaks of the implants and bones are shown in Figure 8. The peak von Misses stress of the PFNA-II ranged from 23.479 MPa to 141.931 MPa and the femur ranged from 3.91 MPa to 45.37 MPa, increasing with each subsequent step-up in loading (200-1300 N). Under the 1300 N load, the von Misses stress on the medial region of the intramedullary nail (141.931 MPa) was 98.6% greater than on the lateral region (71.453 MPa).

The construct stiffness is defined as the ratio of the femoral head axial displacement to the applied loads. During validation of construct stiffness, the CAD model was subject to the same loads as in the experimental test. For convergence of displacement, the errors of the numerical and experimental results averaged about 7.8% and their coefficients of correlation were 0.986. The construct stiffness of the finite-element model converged to 1680 N/mm, reaching an element number of about 230,000. Thus the finite-element model was considered validated for further analyses.

The residual life of the femur and cephalo-medullary nails are shown in Figure 9, after a simulated three-month implantation period (250,000 loading cycles). The residual life of the construct is only 12,120 cycles under a load of 1000 N. Subjected to dynamic loads from 0 N to 900 N, the residual life of all femur-cephalomedullary-nail constructs tested are similar.

Discussion

The results presented in this study are expressed as the maximum loads borne by the implanted limb. In healthy male individuals, daily activities involving the handling of weight and at the same time temporarily loading only one leg (walking, stair climbing and carrying) generated high hip joint contact forces up to 637%-body weight [18]. As the actual load during the initial three weeks after the operation can range from 60% to 80% body weight, the point at which rehabilitation exercises should be introduced is still controversial [5, 19].

In the severely osteoporotic bone model, the biomechanical tests showed that the mean cycles to implant failure were greater under lower loads than under higher loads. This intact composite bone could withstand pressures as high as 1000 N (60 kg at 1.75 times body weight) [20]. This study found that an early weight-bearing load of 900 N (145%-body weight) can be recommended for postoperative
Intertrochanteric fracture postoperative weight-bearing

rehabilitation [21]. The number of loading cycles (250,000+) reported in this study for the blade screw demonstrated its exceptional cut-out resistance [22, 23]. Given the relatively rapid cut-out seen under loads of greater than 1000 N, early-weight bearing should be introduced cautiously and under strict supervision, particularly with overweight patients, so as to reduce the risk of implant failure. In order to control varus mal-reduction and re-fracture, weight-bearing on each leg should be limited to 900 N to prevent bone failure.

This study investigated the effect of stress concentrations, displacement and von Misses stress of a PFNA-II implant under different loads to assess bone and implant stability in a severely osteoporotic intertrochanteric fracture. In general, the implant makes the cortex highly stressed, thus creating a potential source of yielding and cracking around the screw holes (Figure 6). As shown in Figure 7, the femur is under dual loading in the form of a medial compression force and a lateral tensile force [24]. These forces are then borne by the implant, which provides the majority of the structural support and stability. On average, the screw and nail stresses of the PFNA-II construct were 48.9% higher than those of the femoral bone.

Figure 6. Distal extremity of cortical bone (A) and subsequent rupture of the femoral bone (B).

Figure 7. Datum curve of vertical displacement and transversal displacement after cyclic loading.
Varus displacement was also observed on the femoral head. Data acquisition is implemented using special markers attached to the bone (Figure 3, point a-d). The vertical displacement of the head part is 9.30±0.38 mm (range 9.96-8.91 mm) and transversal displacement is 5.21±0.26 mm (range 5.64-4.91 mm), respectively. This indicates the potential risk of deterioration of the fracture slope and threatens the residual life of the construct (Figure 6A, 6B). Similar subgroup analyses yielded consistent results for the mean number of cycles to failure loaded to 1000 N (12,204 cycles Vs 12,124 cycles). As noted by Havaldar [25], fracture due to compression in cortical bone depends strongly on the bone tissue volume fraction, the architecture and the mechanical properties of the bone tissue. Failure of the bone-implant construct can be attributed to the weakened strength of the cephalic nail due to varus displacement.

The results of this study suggest that limited weight-bearing immediately after surgery could provide better functional outcomes compared to unrestricted loading when treating intertrochanteric fractures. This is demonstrated by the absence of screw cut-out after 250,000 cycles.
Intertrochanteric fracture postoperative weight-bearing cycles under loads of up to 900 N. However, there are a number of limitations of this study that should be noted. First, the PFNA-II implant was drawn from an image which may not be true to the original dimensions or specifications. The assumption that complete friction and compression force exists between these components may not be fully representative of the true condition. Concerning the boundary conditions, it is believed that this assumption would not affect the findings in this computational analysis. Linear elastic material behavior was also assumed so as to simply the calculation. Second, the implant-bone constructs were examined under one loading and boundary condition based on previous publications without muscle forces [24, 26]. Future developments on this model will include soft tissue forces and more accurately simulate physiological conditions so as to offer a more comprehensive insight into the risk of implant failure and the mechanics between implant-bone interfaces.

In conclusion, this study compares PFNA-II implant displacement and loading cycles under among different loads reflective of weight-bearing post-implantation. The computed results demonstrated that stress concentrations and values increase with more weight-bearing. Furthermore, varus displacement of the implant construct also increased following each increase in loading. The peak von Misses stress for PFNA-II implant was found to lie in the medial and lateral region. This study demonstrates that in elderly patients with an unstable intertrochanteric femoral fracture, a proximal femoral nail provides the majority of the postoperative structural support and stability, but weight-bearing should be limited to 900 N.

Acknowledgements

The authors would like to acknowledge Dr. Jun-Feng Jiang, Dr. Sun-Jun Hu and Ying-Qi Zhang for their help in the methodology. We also thank Dr. Colin McClean for proofreading. The study was supported by fund from Shanghai Municipal Science Committee (No. 14411971900) and the National Natural Science Foundation of China (Grant No. 81572218).

Disclosure of conflict of interest

None.

Address correspondence to: Shi-Min Chang, Department of Orthopedic Surgery, Yangpu Hospital, Tongji University, 450 Tengyue Road, Shanghai 200090, P. R. China. Tel: 8602165690520-608; E-mail: shiminchang11@aliyun.cn

Figure 9. Stress force concentration zone in the femur-implant construct under a load of 1000 N. The fatigue life of the femur is 12,120 cycles and the fatigue life of the PFNA-II implant is 52,080 cycles.
Intertrochanteric fracture postoperative weight-bearing

References


Intertrochanteric fracture postoperative weight-bearing
