Original Article

Trimetazidine prevents pirarubicin-induced myocardial damage: a possible antioxidant mechanism

Baoxin Ma1,4*, Qun Li3*, Hua Li2*, Jie Li4, Suisheng Wu4

Departments of 1Cardiology, 2Oncology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong Province, China; Departments of 3Thyroid Surgery, 4Geriatrics, First Hospital of Jilin University, Changchun, Jilin Province, China. *Equal contributors and co-first authors.

Received January 30, 2017; Accepted June 21, 2017; Epub August 15, 2017; Published August 30, 2017

Abstract: In the present study, we investigated the effect and possible mechanism of action of trimetazidine in pirarubicin-induced myocardial damage. Thirty-six Wistar rats were randomly divided into control, model, and treatment groups. The rats in the model and treatment groups were injected through the vena caudalis with pirarubicin (2.5 mg/kg once a week) for six weeks. The control group rats were injected in the same manner with 0.9% NaCl for 6 weeks. The rats in the treatment group received an intragastric infusion of trimetazidine at 5.4 mg/kg/d for 8 weeks, while those in the control and model groups received infusions of 0.9% NaCl. At the end of the experiment, we measured the levels of superoxide dismutase, cardiac enzymes, and free radical mediators. Myocardial tissue was examined using light and electron microscopy. The levels of myoglobin, troponin, and alanine aminotransferase (ALT) were lower in the treatment group than in the model group (P < 0.05). Malondialdehyde (MDA) and nitric oxide (NO) levels were lower after treatment than in the model group (P < 0.05), and nonprotein sulfhydryl (NPSH) and superoxide dismutase (SOD) levels were higher in the treated animals than in the model group (P < 0.05). In the model group, the structure of myocardial cells was severely damaged, they were arranged in a disorderly manner, and myocardial myofilament dissolution and fracturing were observed. In the treatment group, the structure of myocardial cells was orderly, and the structure of the myocardium was essentially preserved. Treatment with trimetazidine reduced mitochondrial damage and relieved myocardial injury, indicating that trimetazidine exerted a protective effect on cardiomyocytes that were exposed to pirarubicin. The mechanism underlying this effect may be related to its antioxidative activities.

Keywords: Trimetazidine, pirarubicin, myocardial damage, oxidative stress

Introduction

Pirarubicin (THP) is a newer generation anthracycline antitumor antibiotic [1, 2]. THP and THP-based combination chemotherapies have demonstrated effectiveness against a variety of tumors [3, 4]. However, the toxic side effects of THP seriously restrict its clinical applications. The progressive, dose-dependent development of cardiomyopathy results in irreversible congestive heart failure [5] mainly as a result of damage to the structure of mitochondria. Because mitochondria affect the metabolism of the heart, THP induces serious toxic effects in the heart [6].

Trimetazidine (1-(2,3,4-trimethoxybenzyl) piperazine; TMZ) is, like ranolazine and L-carnitine, a cardioprotective drug [7, 8]. It blocks fatty acid oxidation and increases glucose utilization, eventually leading to a reduction in intracellular acidosis [9]. Numerous studies have suggested that TMZ inhibits the production of free radicals and preserves myocyte structure and function [10, 11]. However, few studies have evaluated the cardioprotective effect of using TMZ after chemotherapy, and the effects of clinical intravenous chemotherapy and long-term trimetazidine intervention have not been reported. Therefore, in the present study, we evaluated the protective effect of TMZ and the mechanism underlying its protection against THP-induced myocardial injury in rats.

Materials and methods

Animal treatment

A total of 36 healthy male Wistar rats (280 ± 20 g, license: SCXK-(Ji) 2007-0003) were obtained
Trimetazidine prevents pirarubicin-induced myocardial damage

Measurement of free radical mediators

Myocardial tissue was washed with cold 0.9% NaCl, and the liquid was then completely aspirated. After the left ventricular myocardium was isolated and dissociated, a 10% tissue homogenate was prepared by adding cold 0.9% NaCl. The supernatant was separated using centrifugation at 3500 rpm for 15 min at 4°C. After the sample was centrifuged, the supernatant was stored at -20°C. The dithio-bis-nitrobenzoic acid (DTNB) method was used for the nonprotein sulfhydryl (NPSH) assay. Malondialdehyde (MDA) levels were measured using the thiobarbituric acid (TBA) method. Nitric oxide (NO) content was measured using the nitric reductase method. The kits used in this study were provided by the Nanjing Jiancheng Bioengineering Institute, and the procedures were performed according to the kit instructions. SOD activity was determined using the pyrogallol method (Johnson 5600 Biochemical Analyzer and Instrument; kit: 20120810).

Echocardiography detection

After 8 weeks of treatment, the rats were anesthetized via an intraperitoneal injection of 10% chloral hydrate. After the chests of the rats were shaved, the rats were immobilized in the left lateral decubitus position on a laboratory-manufactured fixed table. Ultrasounds were performed using an ALOKA-5500 ultrasonic diagnostic instrument (Japan). All ultrasound measurements were performed by the same experienced physician using the same ultrasound diagnostic apparatus.

Observation of myocardial structure

The rats were anesthetized using diethyl ether. Two pieces of myocardial tissue were obtained from the anterior wall of the left ventricular. One sample was fixed in 10% neutral-buffered formalin and then embedded in paraffin. Paraffin sections were cut and subjected to hematoxylin-eosin (HE) staining after routine deparaffinization and hydration. The following criteria were used for cardiac histopathology scoring: (0 points) the myocardial fibers were arranged...
Trimetazidine prevents pirarubicin-induced myocardial damage

Statistical analysis

All statistical analyses were performed using SPSS 11.5 software (IBM-SPSS, Inc., Armonk, New York, USA). All data are presented as the means ± standard deviations. One-way analysis of variance (ANOVA) was used for multiple comparisons, and P values < 0.05 were considered to be statistically significant.

Results

Trimetazidine ameliorates pirarubicin-induced changes in behavior and body weight

Symptoms were observed in the model and treatment groups at 1 week after pirarubicin was administered. These included poorer men-
Trimetazidine prevents pirarubicin-induced myocardial damage

Figure 5. Echocardiography results in the three groups at 8 weeks after THP administration.

Tal functions, diminished activity, and decreased diet. Some rats exhibited depilation, diarrhea, and weight loss. The symptoms observed in the treatment group were less severe than those observed in the model group. During the 8-week experimental period, 3 rats in the model group and 1 rat in the treatment group died. The body weight of the rats increased with time. The weight in the model group was lower than the weight in the control group (379.23 ± 47.81 vs. 499.11 ± 59.98, P < 0.05), and the weight in the treatment group was higher than the weight in the model group (424.80 ± 35.73 vs. 379.23 ± 47.81; P < 0.05), as shown in Figure 1.

Trimetazidine reduces the levels of cardiac enzymes

Myoglobin, troponin, and alanine aminotransferase (ALT) levels were higher in the model group than in the control group (myoglobin: 134.50 ± 40.87 vs. 101.69 ± 22.8, troponin-I: 0.18 ± 0.03 vs. 0.03 ± 0.02, ALT: 51.19 ± 9.81 vs. 43.54 ± 6.81; P < 0.05) and lower in the rats that were administered trimetazidine than in the model rats (myoglobin: 102.85 ± 19.57 vs. 134.50 ± 40.87, troponin-I: 0.09 ± 0.04 vs. 0.18 ± 0.03, ALT: 39.51 ± 5.26 vs. 51.19 ± 9.81; P < 0.05), as shown in Figure 2.

Trimetazidine suppresses oxidative stress

The levels of MDA and NO were higher and the levels of NPSH and SOD were lower in the model group than in the control group. MDA and NO levels were lower (MDA: 5.01 ± 1.44 vs. 5.41 ± 1.32, NO: 22.31 ± 9.61 vs. 25.73 ± 9.58; P < 0.05), and NPSH and SOD levels were higher (NPSH: 55.53 ± 9.96 vs. 51.99 ± 12.35, SOD: 17.58 ± 0.97 vs. 13.34 ± 3.21; P < 0.05) in the rats administered trimetazidine than in the model group, as shown in Figure 3.

Trimetazidine improves echocardiography parameters

The left ventricular ejection fraction (EF) and fractional shortening (FS) were lower, but the left ventricular internal diastolic diameter (LV-IDd) and left ventricular internal systolic diameter (LVIDs) were higher, in the model group
Figure 6. Observation of myocardial tissue obtained from rats in various groups and examined using an optical microscope (×200). A. Control group; B. Model group: multiple visible myocardial cells, myofilament dissolved (→), fractured (←); C. Treatment group: partial dissolution, fracture (←).

Figure 7. Pathological changes were observed in the myocardial tissues of various groups using an optical microscope. # P < 0.05 compared to the control group, and *P < 0.05 compared to the model group.

Trimetazidine prevents myocardial damage observed under optical microscopy

After 8 weeks, the myocardial cells of the rats in the control group were neatly arranged, and their cellular structures were intact (Figure 6A). In the model group, myocardial cells were arranged in a disorderly manner, their structure was severely damaged, and myocardial myofilament dissolution and fracturing were visible (Figure 6B). In the treatment group, the structure of the myocardial cells was orderly, the structure of the myocardium was essentially preserved, and partial dissolution and fracturing were comparatively absent (Figures 6, 7).

Trimetazidine prevents myocardial damage observed under electron microscopy

After 8 weeks, in the control group, cardiomyocyte sarcomeres were arranged in an orderly fashion, the Z and M lines were clear, and there were many long, oval, and longitudinally arranged mitochondria (Figure 8A). In the model group, myocardial myofilaments were dissolved, fractured, or absent, the number of mitochondria was lower, and cytoplasmic matrices were cavitated (Figure 8B). In the animals treated with trimetazidine, the cardiomyocyte sarcomeres were neatly arranged, the number of local myofilaments was slightly lower, and the surrounding mitochondria were oval and arranged parallel to each other between myofilament bundles (Figure 8C). Hence, the application of trimetazidine reduced mitochondrial damage and relieved myocardial injury (Figures 8, 9).

Discussion

In the present study, we evaluated the effect of trimetazidine and suggest a potential mechanism underlying its activity in pirarubicin-induced myocardial damage. The main findings of this study are the following: 1. injecting THP caused myocardial damage, including the dissolution and fracturing of myofilaments; and 2. TMZ protected against cardiotoxicity via an antioxidative pathway and by upregulating NPSH and SOD and downregulating MDA and NO.

THP is a derivative of anthracycline that exhibits strong antiproliferative activity. However, its clinical uses are severely limited by its cardio-
Trimetazidine prevents pirarubicin-induced myocardial damage

Figure 8. The myocardial tissues of rats in various groups were observed under an electron microscope (×7500), bar = 500 nm. A: Control group: cardiomyocyte sarcomeres were arranged in parallel, the Z and M lines were clear, and the mitochondria were oval and arranged in an orderly fashion (→); B: Model group: myocardial muscle bundles were dissolved (↑), fractured, or absent; the number of mitochondria was lower; and the cytoplasmic matrix was cavitated; C: Treatment group: cardiomyocyte sarcomeres were arranged in line (←), the number of local myofilaments was slightly lower, and the surrounding mitochondria were oval and arranged in parallel between muscle bundles.

Figure 9. Percentage of muscle bundles exhibiting dissolution in various groups when observed under an electron microscope. #P < 0.05 compared to the control group; *P < 0.05 compared to the model group.

Toxic side-effects [5, 12]. THP can intercalate itself into mitochondrial membranes, affecting these organelles and causing the generation of damaging reactive oxygen species (ROS). THP increases ROS concentrations beyond physiological levels [5]. ROS directly or indirectly activate several signaling pathways that lead to cardiomyocyte apoptosis and ultimately to heart failure. Many studies have suggested that the mechanism underlying this protection against cardiotoxicity involves antioxidative activities [13-16]. Sun et al. [14] showed that myricitrin effectively reduced doxorubicin (DOX)-induced cell toxicity by counteracting oxidative stress and increasing the activity of antioxidant enzymes. Das et al. suggested that beet root juice protected against DOX toxicity in cardiomyocytes by reducing the DOX-induced generation of ROS [15].

TMZ is an anti-ischemic agent that is widely used to treat coronary artery disease and does not affect the hemodynamic determinants of myocardial oxygen consumption [17, 18]. The anti-ischemic effects of TMZ have been experimentally assessed in a variety of models [19, 20]. TMZ reportedly protects against smoking-induced left ventricular remodeling by attenuating oxidative stress, apoptosis, and inflammation [10]. It has also been shown that TMZ can shift fatty acid oxidation toward glucose oxidation and attenuate myocardial ischemia/reperfusion injury by activating AMPK and ERK signaling [8].

Study limitations

Our sample size was relatively small, and this may have resulted in unreliable outcomes. Moreover, only one dose of TMZ (5.4 mg/kg/d) was administered in our study. We were therefore unable to determine the effect of using different doses of TMZ on myocardial damage.

In conclusion, in the present study, we provide the first evidence showing that TMZ exerts protective effects in cardiomyocytes that were damaged by pirarubicin, and these effects were most likely related to its antioxidative activity. Hence, the results of the present study may promote the development of a novel drug that can be used to treat pirarubicin-induced cardiotoxicity.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Jie Li, Department of Geriatrics, First Hospital of Jilin University, Changchun, Jilin Province, China. E-mail: lijie2000_2009@163.com
Trimetazidine prevents pirarubicin-induced myocardial damage

References


