Original Article Vitamin A and polyunsaturated fatty acids promote caenorhabditis elegans ⁶⁰Co radiation resistance associated with expression of cyclogeny genes

Mengyi Liu^{1,2}, Qianqian Liu^{1,2}, Youqin Xu^{1,2}, Xinrui Liu^{1,2,5}, Chen Yang^{1,2}, Preet Dhaliwal³, Yanfang Lu^{1,2}, Guanchuan Lin^{1,2}, Xia Li^{1,2}, Lina Chen^{1,2,6}, Chao Zhang^{1,2,3,4}

¹Institute of Genetic Engineering, Southern Medical University, Guangzhou, China; ²Province Key Laboratory of Biochip, School of Basic Medical Science, Southern Medical University, Guangzhou, China; ³Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; ⁴Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ⁵Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China; ⁶Basic Medical College, Xiangnan University, Chenzhou, China

Received October 18, 2017; Accepted February 27, 2018; Epub March 15, 2018; Published March 30, 2018

Abstract: Radiation-induced damage is currently under intensive research. Increasing evidence shows that radiation-induced injury could be resisted by vitamin A (V_A) and polyunsaturated fatty acid (PUFA), however, the mechanisms are yet unknown. This present study explored the effect of V_A and PUFA on radiation damage and the potential mechanisms using the model organism-*Caenorhabditis elegans*. These two radiation protectants were assessed via analysis of survival rate as well as evaluation of cyclogeny-associated genes by qRT-PCR post-radiation. V_A and PUFA did not exert any specific toxic effects on *C. elegans* in the preliminary experiment. The survival rate and fecundity of *C. elegans* decreased after radiation, both of which improved significantly with V_A and PUFA treatment. The morphology of the eggs was altered remarkably by radiation, which could be prevented by V_A and PUFA. Division patterns of the seam cells, cuticle, and molt formation-related genes, *bro-1, cki-1, ceh-16, dpy-2, dpy-8* and *grl-5* were significantly expressed as compared to the V_A and PUFA groups with CK group, post-radiation, respectively. Thus, it can be speculated that radiation caused seam cell hyperplasia, reduced formation of the cuticle, and limited the growth of molt. V_A and PUFA have a protective effect on the division pattern under 200 Gy and arrest the cell cycle checkpoint under 400 Gy. PUFA, not V_A , exhibited radiation resistance by regulating the molt and formation of the cuticle, especially under higher radiation treatment. Moreover, PUFA primarily regulated the seam cell division pattern to resist radiation injury under 200 Gy while controlling the rate of cell division under 400 Gy.

Keywords: Vitamin A, polyunsaturated fatty acid, radiation protection, *Caenorhabditis elegans*, cyclogeny-associated genes

Introduction

Radiation disrupts the proliferation ability of hematopoietic cells. It also damages biofilm and nucleic acids in cells causing DNA strand rupture by generating free radicals [1] and postpones eukaryotic cell division [2] by inhibiting the entry into cell cycle [3]. Therefore, although radiation therapy is one of the three important methods for cancer treatment, the development of radioprotectants for medical and biodefense applications is essential.

Vitamin A (V_A) , an unsaturated monobasic alcohol with an alicyclic ring existing in the form of a

retinoic ester, plays a major role in radioactive sensitization, protecting normal cells from radiation [4, 5]. The specific underlying mechanisms, however, are yet unclear. Polyunsaturated fatty acids (PUFA) are straight-chain fatty acids containing two or more double bonds and 16-22 carbon atoms. Reportedly, PUFAs play a vital role in inhibiting tumor cell activity, promoting tumor cell apoptosis, and modulating ultraviolet radiation-induced oxidative stress, cell signaling, and gene expression [6, 7].

Nematodes, such as *Caenorhabditis elegans* (*C. elegans*), depend on fatty acid and retinoidbinding protein (FAR), a nematode-specific protein, to interact with lipid-binding proteins for the uptake of V_A and PUFA to form lipids and other macromolecular structures such as cuticles. These organisms cannot produce fatty acids and retinoids. This mechanism in humans is similar to that of nematodes [8-10]. Herein, we speculate that V_A and PUFAs exert radiation protective effects. Potential mechanisms were tested on the model organism-*C. elegans*.

C. elegans stem cell-like lateral hypodermal (seam) cells, a type of epidermal germinal cells, symmetrically arranged on either side of the body, influence growth and development of C. elegans. Seam cells undergo asymmetric cell division in every larval period and the three symmetric cell divisions in the L2 period that maintain a specific number of seam cells. In the late L4 period, all seam cells cease to divide permanently and fuse together to form a symbolical corneous layer structure in adults-alae. C. elegans bro-1, an ortholog of human CBFβ, is required for normal proliferation and differentiation of seam cells [11]. Inactivation of cki-1 CIP homologs could substantially rescue the defects observed in seam cell division in bro-1 mutants [11]. C. elegans cki-1 encodes a homolog of the mammalian cyclin-dependent kinase inhibitor p27/KIP1 that is required for the arrest of cell division in larval blast lineages, dauer larvae (a specific larval stage that C. elegans enter into in hostile environments), and starved L1 larvae. cki-1 plays a negative regulatory role in the transition of cells from G1 to S phase [12]. ceh-16, a gene encoding the C. elegans engrailed homolog, is expressed in seam cells during embryogenesis and is required for adequate specification and differentiation of seam cells. Moreover, ceh-16 is critical for specifying the fate of seam cells by preventing their fusion with neighboring hypodermal cells and controlling migration during embryogenesis [13].

Collagen provides a barrier between organisms and environment and is vital in morphogenesis, sports, and signal transduction. It also acts as a cell matrix protein [14]. The cuticle of *C. elegans* is synthesized five times during development: once in an embryo before hatching and the other four times at the end of each larval stage, before molting. *dpy-2* encodes a rare cuticular collagen that is required for maintaining the normal body length of *C. elegans* in later larval stages and proper formation of circumferential furrows on the surface of the cuticle of *C. elegans*, which is termed as annuli [15]. *dpy-8* encodes a collagen with a nematode-specific N-terminal domain that is required for normal body morphology and putatively for a normal rate of embryonic cell division.

Molting is the formation and degradation of the protective outer cuticle. Moreover, depending on the period, it is also defined as the synthesis and secretion of proteins such as collagens and proteolytic enzymes, which play an essential role in growth and proliferation of *C. elegans* [16]. During development into an adult, the larvae of *C. elegans* undergo molting a total of four times. As a regulation gene of molting, the *glr*-5 gene of *C. elegans* also regulates the developmental cycle by participating in Hedgehog signaling pathways in *C. elegans* [17].

Based on the above description, bro-1 and ceh-16 might promote seam cell proliferation and/ or self-renewal, with cki-1 as a probable downstream target. Reportedly, radiation arrests cell cycle and inhibits cell proliferation and migration as V, and PUFA exert a potent effect on cell growth and differentiation [18-20]. Additionally, dpy-2 and dpy-8 altered the body shape and affected germline proliferation and fertility under the regulation of grl-5. Radiation accelerates the development of C. elegans, which is associated with expression level of dpy [21]. Therefore, in the current study, we attempted to explore the mechanism of V, and PUFAs in protecting irradiated C. elegans on the gene level. The six genes of C. elegans, ceh-16, cki-1, bro-1, dpy-2, dpy-8 and grl-5 were found to be influenced by $V_{_{\!A}}$ and/or PUFA treatment on the function of radiation protection on the cell cycle and development cycle. In order to observe the effects of V, and PUFAs on radiation resistance and repair in C. elegans, we assessed the growth and morphology of C. elegans as well as the expression of the above genes after irradiation, with or without V_A and PUFA treatment.

Materials and methods

C. elegans strains

Wild-type C. elegans strain, N2, was provided by South China Agricultural University, Guangzhou, Guangdong, China. The strains were maintained according to standard protocols [22].

Table 1. Primer sequences of housekeeping
genes and the genes of interest for gRT-PCR

genes and the genes of interest for qrti-Fort		
cdc-42	Forward	5'TGTTTGCTTCTCCGTGGTTGCT3'
	Reverse	5'CGTTGACACTGGTTTCTGCTTG3'
ceh-16	Forward	5'CCAGAACAAGCGTGCCAAACT3'
	Reverse	5'CTGAACCTTTGCCAACTGAGC3'
bro-1	Forward	5'GACGGGAGCGGTTTAGGGTT3'
	Reverse	5'GGACCATTCCAACTTGACAGG3'
cki-1	Forward	5'GATTCGTTTATGAAGTTATTCCAGA3'
	Reverse	5'GCTCCTCCTTATCAGATGTGCT3'
dpy-8	Forward	5'CTTCTGATTCTGCCGCTGCTT3'
	Reverse	5'ATGATGATGTGCTCTGTGACTT3'
dpy-2	Forward	5'ATGAAATCGCAAACGAGTGGG3'
	Reverse	5'TTGAGAACCGTGAAATGTTATCG3'
grl-5	Forward	5'GTTGTTGATTGTCGGATTTGCC3'
	Reverse	5'CCAGCTCCTCCAGCGGTGAA3'

Synchronization of worms

Worms were collected and washed by M9 buffer (6 g Na_2HPO_4 , 3 g KH_2PO_4 , 5 g NaCl, and 0.25 g $MgSO_4$ -7 H_2O). 2 mL lysis solution (6 mL stock solution containing 2 mL 10% sodium hypochlorite solution, 1 mL 10 M sodium hydroxide solution, and 3 mL distilled water) was used to decompose the worms in 4 mL M9 buffer. After agitating for 9 minutes, the worm eggs were washed by M9 buffer 4 and observed by fluorescence microscopy.

Radiation of C. elegans strains

Five thousand synchronized C. elegans cells were cultured on NGM for 48 hours, followed by exposure to 0 (without radiation), 200 and 400 Gy of ⁶⁰Co y-radiation using GMII ⁶⁰Co radiation machine (Beijing Gamma High and New Technology Co., Ltd.) for 0, 66 and 133 minutes, respectively. The number of living worms was enumerated post-radiation using the dilution method [23]. Moreover, 5000 worms treated with 0, 200 and 400 Gy were transferred to fresh NGM medium [3 g NaC1, 2.5 bactopeptone, 17 g bacto-agar, 1 mL cholesterol in ethanol (5 mg/mL), 1 mL M CaCl, 1 mL M MgSO, 25 mL M potassium phosphate buffer (pH 6.0), 975 mL distilled water] [22] and the number of living worms was enumerated after 48 hours to evaluate effects of radiation on the fecundity of C. elegans.

V_{A} and PUFA treatment and toxicity trials

In order to assess the effect of V_A (Shanghai Yuanye Bio-Technology Co., Ltd, purity \ge 89%)

and PUFA (Sigma-Aldrich, catalog# 47033) on radiation resistance, both were solubilized in 95% ethanol at a concentration of 62.5 µg/mL and 250 µg/mL, respectively. Finally, each V,containing NGM (V,⁺) plate contained 6.25 $\mu g V_{A}$ and each PUFA-containing NGM (PUFA⁺) plate contained 25 µg PUFA. 1000 C. elegans were maintained on each of NGM (V_{A}^{+}) and NGM (PUFA⁺) plates. To ensure that V_{A} or PUFA were absorbed, the worms were cultured for five generations in V_{A} or PUFA medium and the medium was refreshed after 72 hours. C. elegans of the V, group (C. elegans cultured on NGM medium with V_{A}), PUFA group (C. elegans cultured on NGM medium with PUFA), and CK group (C. elegans cultured on NGM medium without V, and PUFA) were each irradiated by 60Co with 0, 200 and 400 Gy dose. The number of surviving worms was counted after 4 hours post-radiation.

Morphological analysis

C. elegans has been reported to present high selectivity and sensitivity to 200 Gy [24]. Thus, this dose was used for examining radiation-induced phenotypic changes in the organism as well as the protective effects of V_A and PUFA. Three experimental groups were set up: CK, V_A and PUFA receiving 200 Gy radiation dose. The CK group without radiation served as the control group. The eggs, obtained from worms by synchronization, were observed after 3 hours post-radiation treatment by fluorescence microscopy (×100 magnification).

RNA extraction

Worms were separated from each NGM plate using the M9 buffer and then subjected to three rounds of freeze cracking by alternating between liquid nitrogen and room temperature. Total RNA was extracted using TRIzol (Invitrogen, TaKaRa) Reagent, following the manufacturer's instructions. The concentration and purity (OD260/280) of RNA was measured by Nanodrop 2000 (Thermo Scientific).

Quantitative real-time reverse transcription PCR

One µg total RNA was reverse-transcribed into cDNA on MJ Mini[™] Personal Thermal Cycler (Bio-Rad), using PrimeScript[™] RT reagent Kit with gDNA Eraser (Perfect Real Time, TaKaRa) according to the manufacturer's instructions. Real-time PCR was performed on the ABI Prism

Figure 1. Toxicity trials showed that apparent toxicity was not observed when treated with V_A and PUFA. In order to estimate whether V_A and PUFA, at a concentration of 6.25 µg/25 mL NGM and 25 µg/25 mL NGM, respectively, were detrimental to *C. elegans*, the amount of *C. elegans* (A) and the expression of the six radiation-related genes (B) in CK, V_A and PUFA groups without radiation were analyzed. The value of *cdc-42* (a housekeeping gene) mRNA expression in the CK group was arbitrarily set to 1. Error bars indicate standard error. An average of three representative experiments is shown. Data were analyzed by ANOVA followed by Dunnett's t-test or two-tailed Student's t-test. **represents P < 0.01 when comparing the V_A and PUFA groups with the CK group, respectively.

7500 Real-Time PCR System (Applied Biosystems) using SYBR[®] Premix Ex Taq[™] II (Tli RNaseH Plus, TaKaRa) according to manufacturer's protocol. 20 µL PCR reactions contained 2 µL cDNA and the following cycling conditions were utilized: pre-denaturation at 95°C for 30 seconds, followed by 40 cycles at 95°C for 5 seconds, and 60°C for 34 seconds. The primers were synthesized by Sangon Biotech (Shenggong Biotechnology Co., Ltd, Table 1). cdc-42 was used as a housekeeping gene [25]. A no-template control was included in the reaction for each primer pair and was found to be consistently negative. All experiments were carried out using three biological and three technical replicates. The amount of relative RNA expression was calculated according to $2^{-\Delta\Delta Ct}$ method [26].

Statistical analysis

All values are expressed as mean \pm standard deviation. Significant differences at P < 0.05 were tested using one-way ANOVA followed by Dunnett's t-test or two-tailed Student's t-test. The difference between groups was considered to be significant at *P < 0.05 and **P < 0.01.

Results

V_{A} and PUFA had no toxic effect on C. elegans

In order to estimate whether $V_{_A}$ and PUFA, at a concentration of 6.25 $\mu g/25$ mL NGM and 25 $\mu g/25$ mL NGM, respectively, were detrimental

to C. elegans, the number of organisms in CK, V_A and PUFA groups were enumerated directly and expression of six radiation-related genes was tested. The value of cdc-42 (a housekeeping gene) mRNA expression in the CK group was arbitrarily set to 1.

The results showed that the number of C. elegans treated with V_A (78,900 \pm 3,657) and PUFA (122,300 \pm 14,421) was higher than those without the drug treatment (49,400 \pm 8,260). A significant difference was observed between the PUFA and CK groups (P < 0.05), however, none was observed between the V_A and

CK groups (**Figure 1A**). Compared to the CK group, only expression of *dpy-2* showed a significant decrease in the V_A group (P < 0.05) while the difference in the other five genes in the V_A group and all the six genes in the PUFA group did not differ significantly (**Figure 1B**). Although expression of *dpy-2* in the V_A group was 0.896-fold that of the CK group, the amount of *C. elegans* treated with V_A was 1.59-fold that of the CK group and no significant difference was observed in the expression of *dpy-2* in the V_A group after radiation. Thus, V_A and PUFA were not distinctly toxic to *C. elegans*.

60 Co radiation suppressed the survival rate and fecundity of C. elegans that could be prevented by V_ and PUFA treatment

In order to evaluate the effects of ⁶⁰Co radiation doses on the growth of *C. elegans*, the number of cells was counted directly after radiation treatment and the culture continued after 48 hours. The results showed that 200 and 400 Gy radiation induced 74.691% and 70.838% death, respectively, in worms (**Figure 2A**). The average amount of progeny generated by nematodes (after being cultured for 48 hours postradiation) in the control group (94300 ± 3184) was 3.514-fold than that in the 200 Gy group (26833 ± 1170) and 10.964-fold that of the 400 Gy group (8066 ± 339) (**Figure 2B**). These results indicate that ⁶⁰Co radiation treatment led to mortality of *C. elegans* and decreased

Figure 2. ⁶⁰Co radiation causes lower survival rate and fecundity of *C. elegans*. Analysis of survival rate (A) and fecundity (B) of *C. elegans* receiving 0, 200 or 400 Gy. The survival rate and fecundity were determined as the number of *C. elegans* and cultured for 48 hours post-radiation, respectively. Error bars indicate standard error. An average of three representative experiments is shown. Data were analyzed by ANOVA. **represents P < 0.01 when comparing the V_A and PUFA groups with the CK group, respectively.

Figure 3. V_A and PUFA pre-administration cause higher survival rate of *C. elegans* after 400 Gy radiation dose. Analysis of survival rate of *C. elegans* receiving 0, 200 or 400 Gy. Error bars indicate standard error. An average of three representative experiments is shown. Data were analyzed by ANOVA. **represents P < 0.01 when comparing the V_A and PUFA groups with the CK group, respectively.

fecundity, which was dose-dependent. These results were similar to previous reports [27].

 V_A and PUFA were added into NGM medium, respectively. Compared to the CK group, both V_A and PUFA groups showed a significantly higher survival rate (P < 0.01) after 400 Gy radiation treatment (**Figure 3**). Additionally, the PUFA group (43825 ± 2235) presented an overall higher survival rate than the V_A group (35050 ± 2952). However, no significant difference was observed among the CK, V_A and PUFA groups receiving 200 Gy radiation dose. These results indicate that PUFA exerted a greater protective effect than $V_{{}_{\!\!A}}$ at 400 Gy dose.

Morphology of C. elegans eggs

Eggs of the CK and control groups were sleekly elliptical with a normal eggshell (**Figure 4A**). However, circular (**Figure 4B**), rough (**Figure 4D**), short macro-axis (**Figure 4D**, **4E**), and small caves (**Figure 4C**, **4E**) were noted when 200 Gy radiation dose was administered. Although eggs of the V_A (**Figure 4F**) and PUFA groups (**Figure 4G**) receiving 200 Gy dose appeared rough, they still maintained their eggshells while some eggs had no eggshell at all in the CK group receiving 200 Gy (**Figure 4D**, **4E**).

⁶⁰Co radiation affects expression of multiple C. elegans genes

ceh-16, bro-1, chi-1, dpy-2, dpy-8 and grl-5 were selected for assessing the degree of radiation-induced damage. The six radiation-related genes can be grouped into two categories: cell cycle-related genes (ceh-16, bro-1, chi-1) and developmental cycle-related genes (dpy-2, dpy-8, grl-5). Expression of these genes in *C. elegans* were quantified by qRT-PCR.

The results showed significant differences in expression of five genes between the 200 Gy and 0 Gy groups (P < 0.05). Two genes (*bro-1* and *ceh-16*) were highly expressed in the 200 Gy group while the other three genes (*cki-1*, *dpy-2*, *grl-5*) were poorly expressed compared to the 0 Gy group. Significant differences were observed in the expression of five genes between the 400 Gy and 0 Gy groups (P < 0.05). One gene (*bro-1*) was highly expressed in the 400 Gy group while the other four genes (*cki-1*, *dpy-2*, *dpy-8*, *grl-5*) were expressed at lower levels compared to the 0 Gy group (**Figure 5**).

V_{A} and PUFA affect expression of multiple selected C. elegans genes post-radiation

Expression of the selected IR-related C. elegans genes was tested in different groups treated with V_A or PUFA, respectively, and analyzed by quantitative RT-PCR, as described above.

When exposed to 200 Gy radiation, lower expression of the three genes (*bro-1*, *ceh-16* and *cki-1*) was observed in the V₄ group compared

Figure 4. Morphology of several eggs obtained by synchronization post-radiation. (A) Image of the egg without radiation. The egg was sleekly elliptical, had normal eggshell (black arrow). (B-E). The eggs obtained by radiation of *C. elegans* with 200 Gy were circular (B), rough (D), had short macro-axis (D, E), and small caves (C-E, black arrow). (F-G) Image of the eggs obtained by radiation-treated *C. elegans* with 200 Gy in V_A (F) and PUFA groups (G). Although rough in appearance, the eggshells were retained (F-G, black arrow), while some eggs in the CK group lacked eggshells (D, E).

Figure 5. ⁶⁰Co irradiation affects the expression of several *C. elegans* genes. Expression of several genes was measured by qRT-PCR in *C. elegans* that received a radiation dose of 0, 200 or 400 Gy. Data are reported as fold-induction relative to the expression in untreated worms and normalized to *cdc*-42. The average of three representative experiments is shown. Error bars indicate standard error. The mRNA levels were calculated using the 2^{-ΔΔCt} method. *represents P < 0.05 and **represents P < 0.01 when comparing the V_A and PUFA groups with the CK group, respectively, as analyzed by ANOVA.

to the CK group. Significant differences in the expression of four genes between the PUFA and CK groups was observed (P < 0.05), whereas three genes (*bro-1, ceh-16, cki-1*) expressed lower in the PUFA group and *dpy-2* gene expressed higher compared to the CK group. Four hundred Gy treatment displayed significant differences in the expression of two genes between the V₄ and CK groups (P < 0.05), one gene (*cki-1*) expressed higher in the V_A group while another gene (*grl-5*) expressed lower than the control. The fives genes (*ceh-16, cki-1, dpy-2, dpy-8* and *grl-5*) showed higher expression with 400 Gy in the PUFA group compared to the CK group (**Figure 6B**).

Discussion

In the present study, we compared survival rate, morphology, and expression of six genes of C. elegans under various treatments. According to the results described above, V_{A} and PUFA, at a concentration of 6.25 µg/25 mL NGM and 25 µg/25 mL NGM, respectively, did not exert specific toxic effects on C. elegans in the preliminary experiment. Thus, it was speculated that radiation caused seam cell hyperplasia, reduced formation of the cuticle, and limited growth as well as molt. V, and PUFA had a protective effect on the division pattern at 200 Gy and cell cycle checkpoint arrest under 400 Gy. PUFA, rather than VA, displayed radiation resistance by regulating molt and formation of the cuticle, especially under higher radiation treatment. Moreover, PUFA primarily regulated seam cell division pattern to resist radiation injury under 200 Gy while it controlled the rate of cell division under 400 Gy.

Reportedly, *bro-1* and *ceh-16* play critical roles in promoting seam cell proliferation and/or self-renewal, with *cki-1* as a probable downstream target. Overexpression of *bro-1* and

Figure 6. Altered gene expression in *C. elegans* with V_A and PUFA pre-administration. Expression of several genes was measured by qRT-PCR in *C. elegans* exposed to 200 Gy (A) and 400 Gy (B) in the CK, V_A and PUFA groups. Data are reported as fold-induction as compared to expression in the CK group and normalized to *cdc-42*. An average of three representative experiments is shown. Error bars indicate standard error. The mRNA levels were calculated using the $2^{-\Delta\Delta Ct}$ method. *represents P < 0.05 and **represents P < 0.01 when comparing the V_A and PUFA groups with the CK group, respectively, as analyzed by ANOVA.

ceh-16 causes seam cell hyperplasia, while the loss of cki-1 function also results in an increased number of seam cells [28, 29]. Moreover, seam cell hyperplasia could also be caused by an increased number of seam cells undergoing symmetrical cell division and/or by changes in fate due to the loss of division asymmetrically. Thus, it was speculated that radiation induces death of seam cells, which leads to generation of additional seam cells. The number of seam cells was found to be less with radiation than those without radiation and the eggs were smaller (Figure 4B). Expression of ceh-16 did not change in C. elegans that received 400 Gy radiation. bro-1 and ceh-16 were more highly expressed when cells were treated with 200 Gy than 400 Gy, which indicates that 400 Gy caused severe damage to C. elegans and the homeostatic control was limited.

When function of *dpy-2* was suppressed, seam cells stacked up adjacent to one another, thereby disrupting normal cell contact and leading to formation of an unusual stiff cuticle that altered the shape of the body as short and fat. They only made left-turns and the stiff body in adults caused them to roll helically during movement [22, 30]. The loss of *dpy-8* function inhibited cell divisions due to the reduction of early embryonic cell divisions that could be observed in *dpy-8* mutations among *emb-5* (temperature-sensitive) embryos. In addition, abnormal cell division was corrected while abnormal rate of cell division was observed in

emb-5 embryos [31]. The subsequent 10 seam cells divided to produce daughter cells that fused with hyp7 (the largest syncytium of hypodermis to cover the worm maximally), thereby indicating that dpy-8 reduced the formation of cuticles that otherwise grew with the hypodermis. The cross-sectional area of the buccal cavity, increasing gradually at each molt, limited the rate of resource acquisition and growth rate of the larval worm. Inability of the buccal cavity without molting exhibited unusual properties of the cuticle [30]. With respect to molting, the developmental cycle of C. elegans was regulated by grl-5 via participating in Hedgehog signaling pathways. Additionally, ceh-16 was crucial for specifying seam cell fate by preventing fusion of seam cells with neighboring hypodermal cells and controlling migration of seam cells during embryogenesis. As an effect of radiation treatment, downregulation of dpy-2, dpy-8 and grl-5 and the upregulation of ceh-16 implied that radiation prevented the fusion of seam cells with hyp7, promoting the stack of seam cells, reducing the formation of cuticle, forming abnormal cuticles, limiting growth by inhibiting molt, and causing inability of the buccal cavity that affects feeding. Thus, radiation may have prevented fusion of seam cells with hyp7 and reduced formation of the cuticle. Moreover, collagen served as a vital part of the eggshell. Down-regulation of dpy-8 and dpy-2 could not encode adequate collagen for the formation of appropriate egg-shell, hence, the eggs displayed defects in shells post-radiation and appeared rough (Figure 4).

Retinoic acid, the most potent natural form of vitamin A, directs P19 stem cells to differentiate into cells displaying an endodermal phenotype at low concentrations and induces differentiation to neuroectoderm at higher concentrations [20]. Omega-3 and -6 PUFAs and their metabolites can act through multiple mechanisms to promote proliferation and differentiation of various stem cell types [19]. In C. elegans, radiation-treatment with 200 Gy decreased expression of bro-1 and ceh-16 in the V, and PUFA groups compared to the CK group. The loss of bro-1' function suppresses symmetrical division and the loss of ceh-16' function may cause specific seam cells to undergo asymmetrical fission, which otherwise should have been symmetrical self-renewal expansion [11, 29]. V, and PUFA relieve seam cell hyperplasia by regulating the division pattern. Additionally, symmetrical division maintains homeostatic control at the population level instead of the individual cell level and can replenish the seam cell pool in the case of injury. Asymmetric division cannot display these characteristics. Downregulation of expression of cki-1 under 200 Gy could rescue reduction in the number of seam cells caused by low expression of bro-1. The interaction of lower expression of bro-1, ceh-16, and cki-1 is speculated to maintain the number of seam cells as well as normal development and growth of C. elegans. Normal development corresponding to size and long axis of eggs in the V_{A} and PUFA groups were similar to those without radiation compared to being smaller in the CK group at 200 Gy (Figure 4). This result was in agreement with a previous study that showed blocking of downstream negative regulatory factors, such as cki-1 and bro-1, where these could partially or completely rescue the mutation effect [32]. Therefore, radiation injury induced symmetrical seam cell division to increase the number of seam cells, however, C. elegans treated with V, and PUFA did not require an excess of symmetrical division to repair the injury. Thus, V, and PUFA had a protective effect on radiation resistance, suppressing excessively symmetrical self-renewal expansion division.

Expression of *bro-1* and *ceh-16* post 400 Gy did not alter as a consequence of the treatment with V_A and PUFA. Thus, it can be speculated that 400 Gy dose might have been severely hazardous to *C. elegans*, such that the majority of seam cells pathologically underwent apoptosis and symmetrical division was essential to replenish the number of seam cells. cki-1 played a negative regulatory role on the transition of cells from G1 to S phase. At 400 Gy, expression of cki-1 increased such that the cells were arrested in S phase in the V, and PUFA groups and the relative extension of G1/S phase extended the duration for DNA repair, thereby reducing the risk of faulty DNA damage. In addition, resistance to radiation increased in the V_{A} and PUFA groups with 400 Gy putatively attributable to fewer seam cell divisions post-radiation, resulting in less tissue damage. Thus, it is concluded that the radiation resistance provided by V, and PUFA is exhibited in cell cycle checkpoint arrest rather than regulation of seam cells division patterns at 400 Gy.

Dietary intake of hempseed meal (HSM) with optimal balanced PUFAs accelerates both body growth and developmental rates in Drosophila via stimulation of cell growth and ecdysone synthesis [33]. Compared to the CK group, significant upregulation of dpy-2 and dpy-8 in the PUFA group receiving 400 Gy estimated that additional collagen of C. elegans was synthesized to maintain normal body length and normal embryonic cell division rate and to inhibit the molting-defect. Adequate collagen and upregulation of grl-5 accelerated the molt of the larva. However, expression of grl-5 in PUFA group with 200 Gy did not present a significant difference, thus, it was speculated that worms with PUFA entered the dauer larva state to confront adversity. During this period, expression of molting-relative genes was not required for regulation of molting; thus, expression of grl-5 did not alter distinctly. Significant upregulation of ceh-16 suppressed asymmetrical division of seam cells to produce daughter cells and prevented the fusion of seam cells with neighboring hypodermal cells. Therefore, it was hypothesized that PUFA exhibited radiation resistance by the upregulation of dpy-2 and dpy-8 and expression of ceh-16 reactivity increased to suppress excessive production of collagen and benefit the molt. The results show that PUFAs has a potential radioprotective effect by limiting abnormal formation of the cuticle, promoting molt, and increasing the growth rate of C. elegans.

As described above, upregulation of *bro-1* suppressed symmetrical division and upregulation of *ceh-16*, causing specific seam cells to under-

go an asymmetrical fission instead of symmetrical self-renewal expansion. The results show that expression of *bro-1* and *ceh-16* in the 200 Gy-treated PUFA group decreased while the expression of *dpy-8*, which accelerates the rate of seam cell division, did not alter significantly. This indicates that PUFA primarily regulated seam cell division to resist radiation injury by maintaining the balance between asymmetrical and symmetrical cell division rather than controlling the rate of cell division.

When *C. elegans* received 400 Gy, expression of *ceh-16* increased rather than decreasing without any significant change. Thus, it could be speculated that 400 Gy induced severe damage in *C. elegans* such that the cell division pattern could not resist radiation injury. PUFA induced upregulation of *dpy-8* to accelerate the rate of seam cell division to resist radiation injury. Consecutively, expression of *ceh-16* increased as a response in order to prevent hyperplasia.

Expression of *dpy-2* decreased post-radiation, which could be blocked by PUFA treatment. Thus, it can be inferred that seam cells did not stack up in PUFA-treated samples, suggesting that excessive collagen was synthesized that allowed stretching of the body cuticle. Expression of *dpy-2* did not alter significantly, which infers that the cuticle was not V_A target for radiation resistance. The results show that expression of *dpy-2* exhibits a similar variation tendency between 200 and 400 Gy implying that *dpy-2* is a relatively stable target against radiation damage.

Acknowledgements

The study was supported by the Natural Science Foundation of China Grants #81502761; the Natural Science Foundation of Guangdong Province #2016A030313558, and the Scientific Research Fund of Hunan Provincial Education Department 17C1483.

Disclosure of conflict of interest

None.

Address correspondence to: Chao Zhang and Lina Chen, Institute of Genetic Engineering, Southern Medical University, 1838 Guangzhou Boulevard North, Guangzhou, China. Tel: +86-13824447151; E-mail: zhangchao1558@126.com (CZ); smucln@ 126.com (LNC)

References

- Karbownik M and Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 2000; 225: 9-22.
- [2] Gorgidze LA, Oshemkova SA, and Vorobjev IA. Blue light inhibits mitosis in tissue culture cells. Biosci Rep 1998; 18: 215-224.
- [3] Murray AW and Kirschner MW. Dominoes and clocks: the union of two views of the cell cycle. Science 1989; 246: 614-621.
- [4] Matos A, Nogueira C, Franca C, Carvalho A, Vieira SL, Penna A and Ramalho A. The relationship between serum vitamin A and breast cancer staging before and after radiotherapy. Nutr Hosp 2014; 29: 136-139.
- [5] Roche M, Neti PV, Kemp FW, Azzam EI, Ferraris RP and Howell RW. High levels of dietary supplement vitamins A, C and E are absorbed in the small intestine and protect nutrient transport against chronic gamma irradiation. Radiat Res 2015; 184: 470-481.
- [6] Das UN. Radiation resistance, invasiveness, and metastasis are inflammatory events that could be suppressed by lipoxin A4. Prostaglandins Leukot Essent Fatty Acids 2012; 86: 3-11.
- [7] Nicolaou A, Pilkington SM and Rhodes LE. Ultraviolet-radiation induced skin inflammation: dissecting the role of bioactive lipids. Chem Phys Lipids 2011; 164: 535-543.
- [8] Zhang C, Xie H, Cheng X, Wang DW, Li Y, Xu CL and Huang X. Molecular identification and functional characterization of the fatty acidand retinoid-binding protein gene Rs-far-1 in the burrowing nematode Radopholus similis (Tylenchida: Pratylenchidae). PLoS One 2015; 10: e118414.
- [9] Garofalo A, Rowlinson MC, Amambua NA, Hughes JM, Kelly SM, Price NC, Cooper A, Watson DG, Kennedy MW and Bradley JE. The FAR protein family of the nematode caenorhabditis elegans. Differential lipid binding properties, structural characteristics, and developmental regulation. J Biol Chem 2003; 278: 8065-8074.
- [10] Cheng X, Xiang Y, Xie H, Xu CL, Xie TF, Zhang C and Li Y. Molecular characterization and functions of fatty acid and retinoid binding protein gene (Ab-far-1) in Aphelenchoides besseyi. PLoS One 2013; 8: e66011.
- [11] Xia D, Zhang Y, Huang X, Sun Y and Zhang H. The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation, and specification of the stem cell-like seam cell lineages. Dev Biol 2007; 309: 259-272.
- [12] Hong Y, Roy R and Ambros V. Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in caenorhabditis elegans. Development 1998; 125: 3585-3597.

Int J Clin Exp Med 2018;11(3):1679-1688

- [13] Cassata G, Shemer G, Morandi P, Donhauser R, Podbilewicz B and Baumeister R. ceh-16/ engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 2005; 132: 739-749.
- [14] Kramer JM, Johnson JJ, Edgar RS, Basch C and Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 1988; 55: 555-565.
- [15] McMahon L, Muriel JM, Roberts B, Quinn M and Johnstone IL. Two sets of interacting collagens form functionally distinct substructures within a Caenorhabditis elegans extracellular matrix. Mol Biol Cell 2003; 14: 1366-1378.
- [16] Johnstone IL. Cuticle collagen genes. Expression in caenorhabditis elegans. Trends Genet 2000; 16: 21-27.
- [17] Jianming Y. Investigation of the molecular mechanism underlie the rapid development of C. elegans induced by electromagnetic fields using high-through sequencing technology and the driving force behind the overall inverse-S shaped curve of the amplification efficiency in PCR reaction. Anhui Medical University 100. 2014.
- [18] Fehlauer F, Muench M, Rades D, Stalpers LJ, Leenstra S, van der Valk P, Slotman B, Smid EJ and Sminia P. Effects of irradiation and cisplatin on human glioma spheroids: inhibition of cell proliferation and cell migration. J Cancer Res Clin Oncol 2005; 131: 723-732.
- [19] Kang JX, Wan JB and He C. Concise review: Regulation of stem cell proliferation and differentiation by essential fatty acids and their metabolites. Stem Cells 2014; 32: 1092-1098.
- [20] Kanungo J. Retinoic acid signaling in P19 stem cell differentiation. Anticancer Agents Med Chem 2017; 17: 1184-1198.
- [21] Konopacka M and Rzeszowska-Wolny J. Antioxidant vitamins C, E and beta-carotene reduce DNA damage before as well as after gamma-ray irradiation of human lymphocytes in vitro. Mutat Res 2001; 491: 1-7.
- [22] Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974; 77: 71-94.
- [23] Hartman PS and Herman RK. Radiation-sensitive mutants of caenorhabditis elegans. Genetics 1982; 102: 159-178.
- [24] Hartman P, Goldstein P, Algarra M, Hubbard D and Mabery J. The nematode Caenorhabditis elegans is up to 39 times more sensitive to gamma radiation generated from 137Cs than from 60Co. Mutat Res 1996; 363: 201-208.

- [25] Taki FA and Zhang B. Determination of reliable reference genes for multi-generational gene expression analysis on C. elegans exposed to abused drug nicotine. Psychopharmacology (Berl) 2013; 230: 77-88.
- [26] Schmittgen TD and Livak KJ. Analyzing realtime PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101-1108.
- [27] Weidhaas JB, Eisenmann DM, Holub JM and Nallur SV. A Caenorhabditis elegans tissue model of radiation-induced reproductive cell death. Proc Natl Acad Sci U S A 2006; 103: 9946-9951.
- [28] Kagoshima H, Nimmo R, Saad N, Tanaka J, Miwa Y, Mitani S, Kohara Y and Woollard A. The C. elegans CBFbeta homologue BRO-1 interacts with the Runx factor, RNT-1, to promote stem cell proliferation and self-renewal. Development 2007; 134: 3905-3915.
- [29] Huang X, Tian E, Xu Y and Zhang H. The C. elegans engrailed homolog ceh-16 regulates the self-renewal expansion division of stem celllike seam cells. Dev Biol 2009; 333: 337-347.
- [30] Knight CG, Patel MN, Azevedo RB and Leroi AM. A novel mode of ecdysozoan growth in Caenorhabditis elegans. Evol Dev 2002; 4: 16-27.
- [31] Nishiwaki K and Miwa J. Mutations in genes encoding extracellular matrix proteins suppress the emb-5 gastrulation defect in Caenorhabditis elegans. Mol Gen Genet 1998; 259: 2-12.
- [32] Fukuyama M, Gendreau SB, Derry WB and Rothman JH. Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cellcycle exit and morphogenesis in C elegans. Dev Biol 2003; 260: 273-286.
- [33] Lee MJ, Park MS, Hwang S, Hong YK, Choi G, Suh YS, Han SY, Kim D, Jeun J, Oh CT, Lee SJ, Han SJ, Kim D, Kim ES, Jeong G and Cho KS. Dietary hempseed meal intake increases body growth and shortens the larval stage via the upregulation of cell growth and sterol levels in drosophila melanogaster. Mol Cells 2010; 30: 29-36.