Original Article
Study on new classification and treatment of vascular malformations in the extremities

Xuejian Liu, Hailin Yang, Yangzhang Wen, Zhenfeng Zhu, Wenchuan Yang, Yuhua Li, Xia Wu

Department of Oncology, People’s Hospital of Linyi Economic and Technological Development Zone (Linyi Third People’s Hospital), Linyi 276023, Shandong Province, China

Received January 3, 2018; Accepted February 4, 2018; Epub April 15, 2018; Published April 30, 2018

Abstract: Objective: To propose a new clinical classification of vascular malformations (VMs) in the extremities, and to investigate the correlation between the new classification and the effectiveness of treatment. Methods: We retrospectively analyzed the clinical data of 256 patients who were treated in our hospital for VMs in the extremities, including their clinical characteristics, imaging data, conventional classification, treatment process and prognosis. Based on the extent of lesion determined by the imaging test, the cases were classified into six categories, which were superficial type, mono-localized type, poly-localized type, extensive type, nerve type, and diffuse type. The treatment process and treatment outcome in all the patients were analyzed, and the correlation between the new classification and the treatment effectiveness were investigated. Results: According to the conventional classification, the lesions (256 cases) could be divided into high-flow VM (arteriovenous malformation, 77 cases) and low-flow VM (venous malformation, 179 cases), while according to the new classification, they could be classified into six types, which were superficial type (84 cases), mono-localized type (56 cases), poly-localized type (23 cases), extensive type (74 cases), nerve type (9 cases), and diffuse type (10 cases). Treatment methods were as follows: most of the patients with superficial type received laser treatment (80/84); most of the patients with mono-localized type or poly-localized type underwent surgical excision only (25/56, 12/23); among patients with extensive type, 21 of them underwent surgical excision only (21/74), while 34 received surgical excision plus muscle transfer (34/74); patients with nerve type underwent surgical excision only (2/9) and embolization of draining vein and sclerotherapy (7/9); more than half of the patients with diffuse type received embolization of draining vein and sclerotherapy (6/10, the other 4 patients didn’t receive any treatment). Patients were followed up for 1-10 years (average 6.5 years). Under the conventional classification based on the hemodynamics, the improvement rates in patients with high-flow type and low-flow rate were 84.42% and 94.97% respectively, whereas under the new classification based on the extent of lesion, the improvement rates in groups of superficial type, mono-localized type, poly-localized type, extensive type, nerve type and diffuse type were 95.24%, 98.21%, 95.65%, 87.84%, 55.56% and 80.00% respectively (P<0.001). Logistic regression analysis found significant difference in the prognosis between these two classifications (P=0.02). Conclusion: The new classification proposed in this study was found to be closely related to the prognosis of VMs in extremities, and treatments received by patients within the same group under the new classification tended to be the same. This finding suggests that the new classification can be applied clinically for assisting in the clinical diagnosis and treatment.

Keywords: Extremities, vascular malformations, therapeutics

Introduction
Vascular malformation (VM) is a common benign vascular lesion in soft tissues of extremities, which accounts for about 7% of the benign soft tissue tumors. It is mainly an abnormality in blood vessel structure, with no abnormal cell [1]. VMs in extremities are often manifested as extensive lesions, which can bring about severe complications, and even threaten the lives of patients [2, 3]. Surgery alone is likely to cause massive bleeding, and oftentimes cannot cure the disease completely. Meanwhile, VMs can extend to the joints and bones to cause severe complications, massive bleeding, handicap and even death, which create difficulties for the treatment [4]. In the past, VMs are often divided into two categories, which are high-flow type and low-flow type [5]. However, this type of classification is not closely related to patient’s
New classification and treatment of vascular malformations in the extremities

prognosis, and provides very limited assistance in making treatment plans [6]. Due to the development of imaging and interventional technologies, new classifications are expected to be established. Therefore, based on patients' case histories and imaging results, the present study proposed a new type of classification, and investigated its correlation with the prognosis of the disease.

Materials and methods

Case selection

The clinical data of 256 cases of VMs (with complete medical records) were collected for the study. The study was approved by the Ethics Committee of People's Hospital of Linyi Economic and Technological Development Zone and informed consents were obtained from patients.

Inclusion criteria were as follows: patient met the diagnostic criteria of VM (test of X-ray and CT found phleboliths in soft tissues of extremities; vascular anomaly in extremities was detected by color ultrasound; abnormality in feeding artery was identified by DSA); patient aged between 18 and 70 years (with no restriction on gender); the treatment process was complete and patient was not lost to follow-up (follow-up period was 2 years).

Exclusion criteria: patients were found to have open blood vessel injuries of the extremities; patient had evident heart, liver, lung, or kidney failure.

Data extraction

The following information was collected for the study, which included patients' basic information (age, gender, underlying diseases), symptoms and physical signs, clear diagnosis, conventional classification, imaging results (DX, CT, MRI, ultrasound), pathological feature, complete treatment process with no missing information, follow-up period, and prognosis.

Information regarding the treatment methods was collected, which included parameters of laser treatment (such as laser type and power), and data related to the surgical excision (such as signs, excision area, whether or not there was any muscle transfer, embolization, and sclerotherapy). Based on these information, the treatment methods in patients were classified into five groups: 1) Laser treatment; 2) Surgical excision; 3) Surgical excision + muscle transfer; 4) Embolization of feeding artery + excision of tumor; 5) Embolization of draining vein + sclerotherapy.

The effectiveness of treatment was defined by using following criteria: 1) Cured: VM or vascular tumor was removed completely; patient could get back to normal life and experienced no recurrence during a more than one-year follow-up; 2) Markedly improved: the lesions were almost completely removed, or the tumor size was reduced by over 80%; the tumor was stable or grew slowly during follow-up period; patient had no sign of pain; the affected limb could function properly; 3) Improved: the main tumor in the lesion was removed, or the tumor size was reduced by over 30%; the pain was relieved and the function of the limb improved, which wouldn't keep patient from living normal life; 4) Not improved: the tumor was not noticeably reduced; patient’s symptoms were not evidently improved and patient still couldn’t get back to normal life [7].

Basis of the new classification

Lesions were classified into the following six types based on their extents: 1) Superficial type: the lesion was only in the superficial tissue, and didn’t extend to the muscle; 2) Mono-localized type: the lesion was only in one area or one muscle; 3) Poly-localized type: the lesions were in the single muscle group of multiple areas, where less than 50% of the muscles were affected; 4) Extensive type: the lesions were in multiple areas or multiple muscle groups, where more than 50% of the muscles were affected; 5) Nerve type: the tunica vaginalis and perineurium of the nerve trunk in extremities were affected; 6) Diffuse type: the lesions existed in multiple muscle groups and soft tissues of the entire limb.

Outcome measures

The outcome measures were mainly about the differences in the prognosis between two classifications, which included the difference in the lesion progression, and whether or not there was any association between the new classification and the prognosis.
New classification and treatment of vascular malformations in the extremities

Table 1. Symptoms and physical signs

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Case</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limb hypertrophy or presence of localized soft tissue masses</td>
<td>243</td>
<td>94.92</td>
</tr>
<tr>
<td>Blue skin</td>
<td>111</td>
<td>43.36</td>
</tr>
<tr>
<td>Red spots on skin</td>
<td>24</td>
<td>9.38</td>
</tr>
<tr>
<td>Increase in skin temperature</td>
<td>21</td>
<td>8.20</td>
</tr>
<tr>
<td>Pain in affected limbs</td>
<td>138</td>
<td>53.91</td>
</tr>
<tr>
<td>Affected limbs had different levels of deformities and malfunctions</td>
<td>38</td>
<td>14.84</td>
</tr>
<tr>
<td>Tumors were complicated by localized ulcers which later ruptured</td>
<td>6</td>
<td>2.34</td>
</tr>
</tbody>
</table>

Table 2. Treatment of patients under conventional classification

<table>
<thead>
<tr>
<th>Treatment method</th>
<th>Case</th>
<th>High-flow type</th>
<th>Low-flow type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser treatment</td>
<td>94</td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>Surgical excision</td>
<td>64</td>
<td>12</td>
<td>52</td>
</tr>
<tr>
<td>Surgical excision + muscle transfer</td>
<td>34</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Embolization of feeding artery + resection of tumor</td>
<td>34</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>Embolization of draining vein + sclerotherapy</td>
<td>21</td>
<td>-</td>
<td>21</td>
</tr>
<tr>
<td>Amputation</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>No treatment</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>256</td>
<td>77</td>
<td>179</td>
</tr>
</tbody>
</table>

Statistical analysis

SPSS software was applied for the statistical analysis. The count data were expressed as percentage (rate) and the measurement data were expressed as mean ± sd; comparison of the treatment effectiveness among individuals in different classification were performed by X^2 test.

The association between the method of new and conventional classification and the prognosis was analyzed by multiple logistic regression. The prognoses were divided to two groups, which were group of improvement and group of non-improvement. The method of binary classification was adopted. The conventional classification was taken as variable 1, and the high-flow and low-flow type were coded 0 and 1 respectively. The new classification was taken as variable 2, and the dummy variables were used in coding: the superficial type was taken as control X1=0, X2=0, X3=0, X4=0, X5=0; mono-localized type: X1=1, X2=0, X3=0, X4=0, X5=0; poly-localized type: X1=0, X2=1, X3=0, X4=0, X5=0; extensive type: X1=0, X2=0, X3=1, X4=0, X5=0; nerve type, X1=0, X2=0, X3=0, X4=1, X5=0; diffuse type: X1=0, X2=0, X3=0, X4=0, X5=1. Method of binary classification was used in gender and treatment effectiveness, in which the male and female were coded 0 and 1 respectively, and the improvement and non-improvement were coded 0 and 1 respectively. Gender, age, and type of classification were entered into the regression analysis (Backward: Wald). The alpha-to-enter significance level was 0.10, while the alpha-to-remove significance level was 0.15. A value of $P<0.05$ was considered as statistically significant.

Results

Basic information

Among the 256 patients from our hospital, there were 134 male patients and 122 female patients (the ratio of males to females was 1:1). The age distribution of the patients was as follows: 11 patients aged 18-20 years, 18 patients aged 21-25 years, 28 patients aged 26-30 years, 113 patients aged 31-40 years, 49 patients aged 41-50 years, 22 patients aged 51-60 years, 9 patients aged 61-70 years, and 6 patients aged over 70 years (mean age ± sd, 48.3±4.7). The average medical history was 8.9 years.
Table 3. Treatment of patients under new classification

<table>
<thead>
<tr>
<th>Treatment method</th>
<th>Case</th>
<th>Superficial type</th>
<th>Mono-localized type</th>
<th>Poly-localized type</th>
<th>Extensive type</th>
<th>Nerve type</th>
<th>Diffuse type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Case</td>
<td>%</td>
<td>Case</td>
<td>%</td>
<td>Case</td>
<td>%</td>
</tr>
<tr>
<td>Laser treatment</td>
<td>94</td>
<td>80</td>
<td>95.24</td>
<td>14</td>
<td>25.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surgical excision</td>
<td>64</td>
<td>4</td>
<td>4.76</td>
<td>25</td>
<td>44.64</td>
<td>12</td>
<td>52.17</td>
</tr>
<tr>
<td>Surgical excision + muscle transfer</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Embolization of feeding artery + resection of tumor</td>
<td>34</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>30.36</td>
<td>6</td>
<td>26.09</td>
</tr>
<tr>
<td>Embolization of draining vein + sclerotherapy</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Amputation</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>21.74</td>
</tr>
<tr>
<td>No treatment</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>256</td>
<td>84</td>
<td>100.00</td>
<td>56</td>
<td>100.00</td>
<td>23</td>
<td>100.00</td>
</tr>
</tbody>
</table>
New classification and treatment of vascular malformations in the extremities

<table>
<thead>
<tr>
<th>Table 4. Follow up of patients under conventional classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Follow-up</td>
</tr>
<tr>
<td>Healed</td>
</tr>
<tr>
<td>Markedly improved</td>
</tr>
<tr>
<td>Improved</td>
</tr>
<tr>
<td>Not improved</td>
</tr>
<tr>
<td>Improvement rate</td>
</tr>
<tr>
<td>X^2 value</td>
</tr>
<tr>
<td>P value</td>
</tr>
</tbody>
</table>

Symptoms and physical signs

There were 243 cases (94.92%) in which patients’ affected limbs were hypertrophic or presented with localized soft tissue masses (the diameter of the largest mass was about 3-4 cm), 111 cases (43.36%) where skin color turned blue, 24 cases (9.38%) where there were red spots on skin, 21 cases (8.20%) where skin temperature increased, 138 cases (53.91%) where pain existed in affected limbs (among which 18 cases reported unbearable pain (7.03%), and one patient suffered from secondary gastrointestinal bleeding due to long-term use of painkillers), 38 (14.84%) cases where the affected limbs had different levels of deformities and malfunctions, 6 (2.34%) cases where the tumors were complicated by localized ulcers which later ruptured and bled (2 cases were arteriovenous malformation (AVM) where blood spurted; 1 case was complicated by fingertip ischemia; 1 case was extensive AVM complicated by reduction in platelet count (30*109/L)). See Table 1.

Treatment plans

According to the conventional classification based on the hemodynamics, there were 77 patients with high-flow type, among which 42 received laser treatment, 12 underwent surgical excision, 4 received surgical excision plus muscle transfer, 14 received embolization of feeding artery and tumor resection, 3 underwent amputation, and 2 didn’t receive any treatment. There were 179 patients with low-flow type, among which 52 received laser treatment, 52 received surgical excision, 30 received surgical resection and muscle transfer, 20 received embolization of feeding artery and tumor resection, 21 received embolization of draining vein and sclerotherapy, 2 received amputation, and 2 had no treatment. See Table 2.

Under the new classification based on the extent of lesion, cases were divided into six types, which were superficial type (84), mono-localized type (56), poly-localized type (23), extensive type (74), nerve type (9), and diffuse type (10). Among the patients with superficial type, 80 received laser treatment and 4 received surgical resection; for patients with mono-localized type, 14 received laser treatment, 25 received surgical resection only, and 17 received embolization of feeding artery and tumor resection; among patients with poly-localized type, 21 received surgical resection only, 34 received surgical resection and muscle transfer, 11 received embolization of feeding artery and tumor resection, 8 received embolization of draining vein and sclerotherapy; 2 patients with nerve type received surgical excision only, while another 7 patients with this type received embolization of draining vein and sclerotherapy; 6 patients with diffuse type received embolization of draining vein and sclerotherapy, and another 4 with this type received no treatment (Table 3).

Treatment effectiveness

Patients were followed up for 1-10 years (average 6.5 years). Under the conventional classification system, the improvement rates in patients with high-flow type and low-flow rate were 84.42% (65/77) and 94.97% (170/179) respectively. The improvement rates in both groups were compared by X^2 test, which returned the value 7.773, and found there was a significant difference ($P=0.005$). Under the new classification system, the improvement rates in the following six types were: 95.24% (superficial type), 98.21% (mono-localized type), 95.65% (poly-localized type), 87.84% (extensive type), 55.56% (nerve type), and 80.00% (diffuse type) respectively. The comparison of these improvement rates among the 6 types was conducted by X^2 test, which returned value 23.920, and showed that the
New classification and treatment of vascular malformations in the extremities

Correlation between treatment effectiveness and classification

The logistic regression analysis was performed to investigate the association between the two classifications and the improvement rates in patients with VMs in extremities. The result showed significant difference in the prognosis between two classifications (P=0.02), while gender had no impact on the prognosis (P=0.175). See Tables 6 and 7.

The result of the logistic regression analysis found that there was no significant difference in the improvement rates between high-flow type and low-flow type under conventional classification after treatment (P=0.05, OR=1.2), whereas there was great difference in improvement rates among various types under new classification. The improvement rates in mono-localized, poly-localized, and extensive type after treatment were similar to that in superficial type (P=0.236, P=0.998, P=0.144). As compared to control group, patients with nerve and diffuse type experienced evident improvement following treatment (P<0.001, OR=1.23; P=0.007, OR=2.43).

Discussion

Disease occurrence

VM in the extremities is mostly likely to occur in teenagers with no gender preference. In the present study, the average age of onset was 48.3±4.7 years, and most of the patients had the onset when they were aged between 31 and 40 years old (44.14%). Histories of these diseases lasted for 8.9 years on average. The ratio of males to females was 1:1. These data were consistent with other studies [8, 9].

Classification and treatment plan

Currently, the treatment plan was usually made based on the impact of the lesion on patient’s quality of life. In most cases, the conservative treatment was applied. However, in the cases where patients experienced clinical complications, percutaneous puncture or interventional treatment would then be necessary. According to lesion’s location, severity and level of deformity, sclerosants and embolic agents used in artery may need to be used in combination, such as ethanol, bleomycin, 3% sodium tetradeyl sulfate (STS), polidocanol and various coils and polymer microspheres [10, 11]. Ethanol sclerotherapy has been successfully applied clinically in some cases of low-flow VMs. It can be used as either a single treatment or a treatment before the operation [12, 13]. When treating high-flow VM, the aim of the treatment is to cut off arteriovenous fistula by ethanol. However, the sclerotherapy cannot solve this issue well, which may be partly due to the fact that ethanol can make the infused or injected drug flow out rapidly. So far,
New classification and treatment of vascular malformations in the extremities

Table 7. Impacts of the two classifications and gender on treatment effectiveness

<table>
<thead>
<tr>
<th>Step 1<sup>a</sup></th>
<th>Variable 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E</td>
<td>Wals</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>Variable 1 (1)</td>
<td>-0.482</td>
<td>0.407</td>
<td>1.404</td>
<td>1</td>
<td>0.236</td>
</tr>
<tr>
<td>Variable 1 (2)</td>
<td>-18.786</td>
<td>7,882.490</td>
<td>0.000</td>
<td>1</td>
<td>0.998</td>
</tr>
<tr>
<td>Variable 1 (3)</td>
<td>-1.124</td>
<td>0.770</td>
<td>2.132</td>
<td>1</td>
<td>0.144</td>
</tr>
<tr>
<td>Variable 1 (4)</td>
<td>23.620</td>
<td>28,420.722</td>
<td>0.000</td>
<td>1</td>
<td>0.999</td>
</tr>
<tr>
<td>Variable 1 (5)</td>
<td>1.319</td>
<td>0.723</td>
<td>3.329</td>
<td>1</td>
<td>0.068</td>
</tr>
<tr>
<td>Constant</td>
<td>-2.417</td>
<td>0.279</td>
<td>75.102</td>
<td>1</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2<sup>b</sup></th>
<th>Variable 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E</td>
<td>Wals</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>Variable 1 (1)</td>
<td>-1.129</td>
<td>0.420</td>
<td>7.217</td>
<td>1</td>
<td>0.007</td>
</tr>
<tr>
<td>Variable 1 (2)</td>
<td>-0.303</td>
<td>8,540.342</td>
<td>0.000</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Variable 1 (3)</td>
<td>17.359</td>
<td>3,286.914</td>
<td>0.000</td>
<td>1</td>
<td>0.996</td>
</tr>
<tr>
<td>Variable 1 (4)</td>
<td>42.103</td>
<td>28,610.160</td>
<td>0.000</td>
<td>1</td>
<td>0.999</td>
</tr>
<tr>
<td>Variable 1 (5)</td>
<td>19.802</td>
<td>3,286.914</td>
<td>0.000</td>
<td>1</td>
<td>0.995</td>
</tr>
<tr>
<td>Classification</td>
<td>-19.396</td>
<td>3,286.914</td>
<td>0.000</td>
<td>1</td>
<td>0.995</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.504</td>
<td>0.295</td>
<td>25.913</td>
<td>1</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3<sup>c</sup></th>
<th>Variable 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>S.E</td>
<td>Wals</td>
<td>df</td>
<td>Sig.</td>
</tr>
<tr>
<td>Variable 1 (1)</td>
<td>-18.997</td>
<td>3,748.382</td>
<td>0.000</td>
<td>1</td>
<td>0.996</td>
</tr>
<tr>
<td>Variable 1 (2)</td>
<td>-18.774</td>
<td>9,282.271</td>
<td>0.000</td>
<td>1</td>
<td>0.998</td>
</tr>
<tr>
<td>Variable 1 (3)</td>
<td>-1.112</td>
<td>4,901.725</td>
<td>0.000</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>Variable 1 (4)</td>
<td>23.632</td>
<td>28,840.325</td>
<td>0.000</td>
<td>1</td>
<td>0.999</td>
</tr>
<tr>
<td>Variable 1 (5)</td>
<td>1.331</td>
<td>4901.725</td>
<td>0.000</td>
<td>1</td>
<td>0.995</td>
</tr>
<tr>
<td>Classification</td>
<td>-19.211</td>
<td>3,158.566</td>
<td>0.000</td>
<td>1</td>
<td>0.995</td>
</tr>
<tr>
<td>Gender</td>
<td>18.286</td>
<td>3,748.382</td>
<td>0.000</td>
<td>1</td>
<td>0.996</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.504</td>
<td>0.295</td>
<td>25.913</td>
<td>1</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Note: a, key in variable (variable 1) in step 1; b, key in variable (classification) in step 2; c, key in variable (gender) in step 3.

There has been no consensus on any ideal treatment method for more complicated VMs, while some studies proposed the idea of multidisciplinary approach [10, 11, 14]. For patients with high-flow type, surgeons should pay much attention to the preoperative preparation and intraoperative procedure in order to prevent any severe uncontrollable bleeding during surgery, especially if they are going to operate on areas where bleeding can occur easily, such as hip and groin. After embolization of the artery, the dilated malformed vascular mass and venous pool would shrink and the tension would decrease, the borders between tumors and normal tissues would become clear, which can make the resection of the tumor easier, and reduce the volume of blood loss [15, 16].

In an effort to find ways to provide better assistance in making suitable treatment plans, we used the new classification to divide VMs in extremities into six groups, which were superficial type, mono-localized type, poly-localized type, extensive type, nerve type and diffuse type [17, 18].

If the lesions of superficial or mono-localized type are at steady state, with small sizes, and don’t affect the appearance or impair the function, the regular follow-up can be conducted. The initial management of the disease is conservative, with the aim of relieving pain and swelling. Sclerotherapy, laser treatment and embolization of artery can be beneficial. Surgery should be performed if there is ongoing pain, and malfunction or nerve compression caused by uncontrollable limb swelling. The purpose of the operation is to maximally remove the lesion, while attention should be paid to avoid injury to adjacent nerves and lymphatic vessels in order to reduce bleeding as much as possible, and to prevent limb ischemia. All these require a detailed preoperative planning and delicate operation. The adjunctive treatment would be necessary. For example, preoperative embolization can be performed.
New classification and treatment of vascular malformations in the extremities

on patients with high-flow type which is adjunc-
tive to the surgery [19]. In the laser treatment,
oxymyoglobin in blood vessel can selectively
absorb the color radical in light energy and gen-
erate heat locally, thus damaging the affected
vessel and removing the lesion [20]. The treat-
ment methods for patients with superficial or
mono-localized type in the study were as fol-
lows, 80 patients with superficial type and 14
with mono-localized type received laser treat-
ment, 4 with superficial type and 25 with mo-
no-localized type received surgical excision, 17
with mono-localized type received embolizati-
on of feeding artery and resection of tumor.
Patients were followed up after surgery, which
found that improvements in the 84 cases of
superficial type (95.24% of improvement rate)
and 53 cases with mono-localized type (98.21%
of improvement rate). For patients with poly-
localize or extensive type, surgeries should
be performed if lesions impair the limb func-
tion. The type of vascular tumor, and area and
depth of the lesion should be determined prior
to the operation. Good knowledge of anatomy
and tissue structure is required for maximum
possible resection of tumor. In cases where
muscle transfer can be conducted, the affect-
ed muscle should be removed as much as pos-
sible; whereas the resection of muscle shoul-
dn’t exceed 50% in cases where muscle trans-
fer cannot be performed, so as to keep the
function of extremities. A total of 23 patients
with poly-localized type and 74 with extensive
type were followed up (95.65% and 87.84%
of improvement rate, respectively), while 1 case in
poly-localize type and 9 cases in extensive
type had no improvement. For nerve type in
which nerve is affected, the nerve compression
should be eliminated, meanwhile blood supply
should be maintained in order to avoid nerve
ischemia. There were 9 patients with nerve
type and 10 with diffuse type, who were fol-
lowed up after surgery. The improvement rate
of nerve type was 55.56% and 4 cases had no
improvement; the improvement rate of diffuse
type was 80.00% and 2 cases had no improve-
ment. The treatment of VM in diffuse type is
still quite difficult. Normally patients with this
type are treated with embolization of draining
vein by anhydrous ethanol plus sclerotherapy,
which is mainly to control the development of
disease, and to relieve clinical symptoms. Im-
ageing examination is taken after the surgery
immediately, while some scholars suggest tak-
ing this test 3 days after surgery [14]. Color
Doppler ultrasound can be used selectively fol-
lowed by CT angiography, but it is believed that
MRI is still the best way for evaluating medium-
and long-term management of the disease [14].

Disclosure of conflict of interest

None.

Address correspondence to: Xia Wu, Department
of Oncology, People’s Hospital of Linyi Economic
and Technological Development Zone (Linyi Third
People’s Hospital), No.117 Huaxia Street, Linyi
Economic and Technological Development Zone,
Linyi 276023, Shandong Province, China. Tel: +86-
0539-8769202; E-mail: wuxia2837@163.com

References

[1] Ly JQ, Sanders TG, Mulloy JP, Soares GM, Beall
DP, Parsons TW and Slabaugh MA. Osseous
change adjacent to soft-tissue hemangiomas
of the extremities: correlation with lesion size
and proximity to bone. AJR Am J Roentgenol
2003; 180: 1695-1700.

Marmery H, Platts A and Holloway B. Peripher-
al limb vascular malformations: an update of
appropriate imaging and treatment options of
a challenging condition. Br J Radiol 2015; 88:
20140406.

[3] Johnson JB, Cogswell PM, McKusick MA,
Binkovitz LA, Riederer SJ and Young PM. Pre-
treatment imaging of peripheral vascular mal-
formations. J Vasc Diagn 2014; 2014: 121-
126.

of the frequency and prognosis of arteriove-
nous malformations of the brain in adults.
Brain 2001; 124: 1900-1926.

[5] Buckmiller LM, Richter GT and Suen JY. Diag-
nosis and management of hemangiomas and
vascular malformations of the head and neck.

Diagnosis and management of extensive vas-
cular malformations of the lower limb: part I.
65: 893-906; quiz 907-898.

malformations: clinical presentation, classifi-
cation, patient selection, imaging and treat-
ment. Cardiovasc Intervent Radiol 2015; 38:
1082-1104.

[8] Burrows PE and Mason KP. Percutaneous
treatment of low flow vascular malformations.
New classification and treatment of vascular malformations in the extremities