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Abstract: Hypertrophic scars (HS) often result from overproduction of hypertrophic scar fibroblasts (HSFs) and ex-
cessive deposition of collagen. The purpose of this study was to evaluate the pharmacological properties of emodin 
in HS management. Our results demonstrate that emodin treatment remarkably inhibits HSF proliferation, induces 
apoptosis, and represses Col I, Col III, and α-SMA expression in in vitro and ex vivo in an HS model. Western blot 
analysis further revealed that emodin significantly attenuates p38 phosphorylation in a dose-dependent manner. 
Taken together, these findings indicate that emodin can exert anti-fibrotic activity mainly through interfering with the 
p38/MAPK signaling pathway. Emodin may be a potential chemopreventive or therapeutic agent for the treatment 
of human HS.
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Introduction

Hypertrophic scars (HS) are features of a seri-
ous fibrotic skin disorder following burns, trau-
ma wounds, and surgical procedures [1]. Pat- 
ients with HS often report pain, itching, stiff-
ness, loss of sensation, loss of joint mobility, 
and anatomical deformities [2, 3]. Currently 
there are multiple therapies for hypertrophic 
scars, including surgery, corticosteroids, com-
pression, laser, and cryotherapy. However, 
none of these treatments has been verified to 
be effective in fully avoiding excessive HS for-
mation and regenerating healthy dermal tissue 
with few side effects [4].

Dysregulation of the wound healing process is 
a critical prerequisite for HS formation [5]. 
During wound healing, fibroblasts from the bor-
der of the wound migrate to the center and 
transdifferentiate into myofibroblasts that abu- 
ndantly yield extracellular matrix (ECM) pro-
teins, especially collagen, thus leading to HS 
formation [6]. HS formation is modulated by 
several cellular signaling pathways, includ- 
ing the p38/Mitogen-activated protein kinase 
(MAPK) signaling pathway, which functions 
through the mitochondrial death pathway [7] 
and cell transdifferentiation [8].

Emodin (1,3,8-trihydroxy-6-methylanthraquino- 
ne) is a natural anthraquinone present in tradi-
tional Chinese herbal medicines, especially 
from Giant Knotweed Rhizome [9]. Several 
studies have revealed that emodin exerts vari-
ous potent biological effects, including anti-
microbial, anti-inflammatory, and anti-tumori-
genic properties [10, 11]. Recently, Tao et al. 
indicated that emodin gel treatment can sup-
press HS formation in a rabbit ear scar model 
[12].

Emodin is reported to exert its therapeutic 
effects through regulating p38/MAPK signaling 
in a wide variety of diseases [13-15], however 
the effects of emodin on p38/MAPK signaling 
in HS formation remain to be further deter-
mined. Thus, the main objective of this work 
was to investigate the anti-fibrotic proper- 
ties of emodin during HS development and 
progression.

Materials and methods

Patient specimens

Human HS tissues were collected from 13 
patients (8 men and 5 women, age ranges from 
24- to 51-year old) who underwent plastic sur-

http://www.ijcem.com


Emodin inhibits HS formation

12311	 Int J Clin Exp Med 2018;11(11):12310-12317

gery in Ningxiang People’s Hospital (Hunan, 
China). The presence of HS was verified through 
pathological examination. Six hypertrophic 
scars were located on the face, four on the 
upper arm, and three on the anterior portion of 
the chest. Patients did not receive any drugs 
prior to skin excision. All experimental protocols 
were approved by the Ethics Committee of 
Ningxiang People’s Hospital, and before the 
experiments were performed, written consent 
was obtained from all patients or their rela-
tives. The patient information is listed in Table 
1.

Cell culture and treatment

The dermal pieces from HS were minced into 
small pieces and incubated in a solution of col-
lagenase type I (Sigma-Aldrich, St. Louis, MO, 
USA) at 0.1 mg/ml for 4 hours at 37°C on a 
rotator to isolate fibroblasts (HSFs). HSFs were 

(Dojindo Laboratories, Kumamoto, Japan). 
HSFs (1×105) were seeded into flat-bottomed 
96-well plates with 100 μL of growth medium 
per well and allowed to attach and grow over-
night. The medium was then replaced with 100 
μL of growth medium containing different 
doses (0, 10, 20, 50 μM) of emodin. After 96 
hours of incubation, 10 μL of CCK-8 solution 
was added and the plates were incubated at 
37°C for additional 4 hours. The optical density 
(OD) of each plate was measured at 450 nm in 
a microplate reader. 

Flow cytometric analysis of cell apoptosis

HSFs were incubated on the 6-well plates in 
medium with different doses (0, 10, 20, 50 μM) 
of emodin. After 96 hours of incubation, the 
HSFs were collected, washed twice with cold 
PBS, resuspended and stained with Annexin 
V-PE and propidium iodide (PI) using the Ann- 
exin V-PE Apoptosis Detection Kit I (BD Bio- 
sciences, San Jose, CA, USA) for 20 minutes at 
room temperature in the dark. Quantitative 
analysis was performed using a flow cytometer 
(BD Bioscience) with CellQuestPro software 
(BD Biosciences).

qRT-PCR analysis

Total RNA was extracted from the tissues and 
fibroblasts using the TRIzol reagent (Invitrogen). 
Reverse transcription of the total RNA into com-
plementary DNA (cDNA) was performed by 
using PrimeScript RT Master Mix (TaKaRa, 
Dalian, China). qPCR analysis was performed 
using FastStart Universal SYBR Green Master 
(Roche, Mannheim, Germany) by a 7900 Fast 

Table 1. HS patient information.
ID Sex Age Smoking status Localization Surgery date
1 Female 36 No Face 2017/03/07
2 Male 29 No Chest 2017/01/14
3 Male 31 Yes Face 2016/12/25
4 Male 39 No Arm 2017/04/11
5 Female 42 Yes Chest 2016/10/16
6 Male 24 No Arm 2017/04/26
7 Female 28 No Face 2017/05/05
8 Male 44 No Face 2016/12/16
9 Male 32 Yes Arm 2017/03/17
10 Female 36 No Face 2017/05/28
11 Female 51 No Arm 2017/02/07
12 Male 39 Yes Chest 2017/06/20
13 Male 43 Yes Face 2016/09/22

Table 2. PCR primer sequences.
Gene name Primer sequences
α-SMA
    Forward 5’-GACAGCTACGTGGGTGACGAA-3’
    Reverse 5’-CGGGTACTTCAGGGTCAGGAT-3’
Col I
    Forward 5’-GAGGGCAACAGCAGGTTCACTTA-3’
    Reverse 5’-TCAGCACCACCGATGTCCA-3’
Col III
    Forward 5’-CCACGGAAACACTGGTGGAC-3’
    Reverse 5’-GCCAGCTGCACATCAAGGAC-3’
GAPDH
    Forward 5’-GTCAACGGATTTGGTCTGTATT-3’
    Reverse 5’-AGTCTTCTGGGTGGCAGTGAT-3’

then cultured in Dulbecco’s modified 
Eagle’s medium (DMEM; Invitrogen, 
Carlsbad, CA, USA) supplemented with 
10% fetal bovine serum (FBS; Invitro- 
gen), 100 U/ml penicillin and 100 U/ 
ml streptomycin in a humidified atmo-
sphere of 5% CO2 at 37°C. Primary HSFs 
of passage numbers 6-8 were used for 
further investigation.

Emodin was purchased from Sigma-
Aldrich, dissolved in DMSO and used at 
different doses (0, 10, 20, 50 μM) to 
treat either HSFs or tissues.

Cell proliferation assay

Cell proliferation assay was perform- 
ed using cell counting kit-8 (CCK-8) 
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Real-Time PCR system (Applied Biosystems, 
Foster City, CA, USA). All primers were all syn-
thesized by Sangon Biotech Co., Ltd. (Shanghai, 
China). GAPDH was used as the internal refer-
ence gene. Relative quantification of individual 
genes was determined by using the 2-ΔΔCt meth-
od [16]. The sequences of primers used in this 
study are shown in Table 2.

Western blot analysis

Protein was extracted from the tissues and 
fibroblasts using RIPA protein extraction rea- 
gent (Beyotime, Shanghai, China) with a prote-
ase inhibitor cocktail (Roche, Pleasanton, CA, 
USA). Equal amounts of protein were separated 
by 10% SDS-PAGE gel electrophoresis followed 
by transference onto nitrocellulose membra- 
nes (Amersham, Little Chalfont, UK). The mem-
branes were then blocked with 2.5% nonfat dry 
milk for 1 hour, followed by incubation with spe-
cific primary antibodies at 4°C overnight. After 
incubation with the corresponding horseradish 
peroxidase (HRP)-conjugated secondary ant- 
ibodies, the immunoreactive protein bands 
were detected by enhanced chemilumines-
cence (Pierce, Rockford, IL, USA). GAPDH was 
used as the internal reference gene.

Cultured HS tissues ex vivo

Ex vivo culture of human HS tissues were per-
formed as described previously [17]. The HS tis-
sues were cut into 5×5 mm sections and cul-
tured in DMEM containing different doses (0, 
10, 20, 50 μM) of emodin. The medium was 
changed every 3 days. After 7 days of incuba-
tion, the HS tissues were fixed in 4% para- 
formaldehyde.

Histological analysis

The HS tissues were embedded in paraffin 
blocks and cut into 4-μm thick tissue sections, 
which were then subjected to hematoxylin and 
eosin (H&E) staining. The histologic character-
istics of the collagen fibers in the samples were 
visualized under an optical microscope.

Statistical analysis

All quantitative data are depicted as mean ± 
standard deviation (SD) from at least three sep-
arate experiments. All statistical analyses were 
performed using GraphPad Prism version 6 
software (GraphPad Software, Inc., La Jolla, CA, 
USA). The differences between groups were 

compared using one-way ANOVA followed by 
Tukey’s post hoc tests. P<0.05 was considered 
statistically significant.

Results

Emodin represses proliferation of HSFs

To investigate the possible impact of emodin on 
growth of HSFs, proliferation activities of HSFs 
were determined by CCK-8 assay after treat-
ment with indicated doses (0, 10, 20, 50 μM) of 
emodin for 96 hours. Our data demonstrated 
that emodin inhibited HSFs proliferation in a 
dose-dependent manner (Figure 1A). Moreover, 
Western blot analysis showed that the cell pro-
liferation markers Ki67 and PCNA were dec- 
reased in a dose-dependent manner in emo-
din-treated HSFs (Figure 1B).

Emodin promotes the apoptosis of HSFs

The effect of emodin on apoptosis of HSFs was 
next investigated by Annexin-V FITC/PI FACS 
analysis. As shown in Figure 2A, follow- 
ing treatment with different doses of emodin 
for 96 hours, the percentage of HSFs under- 
going apoptosis was significantly increased in  
a dose-dependent manner. Apoptosis-related 
genes such as Bcl-2 could also mediate apop-
tosis in HS [18]. Expression of Bcl-2 was found 
to be significantly decreased in emodin-treated 
HSFs (Figure 2B).

Emodin decreased the expression of Col I and 
Col III in HSFs

Through qRT-PCR analysis, it was observed 
that mRNA expression levels of Col I, Col III, and 
α-SMA in HSFs were inhibited by emodin treat-
ment in a dose-dependent manner (Figure 3A). 
This dose-dependent effect of emodin on col-
lagen expression was further confirmed by 
western blot analysis. As depicted in Figure 3B, 
the protein expression levels of Col I, Col III, and 
α-SMA in HSFs were gradually decreased with 
increasing doses of emodin. These results sug-
gest that emodin could repress fibrotic-related 
protein expression to decrease deposition of 
collagen in HSFs.

Emodin inhibits expression of Col I and Col III 
in cultured HS tissues

The potential anti-fibrotic effects of emodin 
were then determined in cultured HS tissues. 
Treatment with emodin for 7 days revealed 
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Figure 1. Emodin represses proliferation of HSFs. A. CCK-8 assay was performed to evaluate the proliferation of HSFs. B. Western blot analysis was performed to 
evaluate the protein expression of Ki67 and PCNA in HSFs. All values are expressed as mean ± SD. *P<0.05 versus HSFs treated with 0 μM emodin.

Figure 2. Emodin promotes apoptosis of HSFs. A. 
Flow cytometric analysis was performed to evalu-
ate the apoptosis of HSFs. B. Western blot analy-
sis was performed to evaluate the protein expres-
sion of Bcl-2 in HSFs. All values are expressed as 
mean ± SD. *P<0.05 versus HSFs treated with 0 
μM emodin.
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Figure 3. Emodin decreased expression of Col I and Col III in HSFs. A. qRT-PCR analysis was performed to evaluate the mRNA expression of Col I, Col III, and α-SMA in 
HSFs. B. Western blot analysis was performed to evaluate the protein expression of Col I, Col III and α-SMA in HSFs. All values are expressed as mean ± SD. *P<0.05 
versus HSFs treated with 0 μM emodin.

Figure 4. Emodin inhibits expression of Col I and Col III in cul-
tured HS tissues. A. qRT-PCR analysis was performed to evalu-
ate the mRNA expression of Col I, Col III, and α-SMA in cultured 
HS tissues. B. Western blot analysis was performed to evaluate 
the protein expression of Col I, Col III, and α-SMA in cultured 
HS tissues. All values are expressed as mean ± SD. *P<0.05 
versus HSFs treated with 0 μM emodin. C. The histologic char-
acteristics of the HS tissues were detected by H&E staining.



Emodin inhibits HS formation

12315	 Int J Clin Exp Med 2018;11(11):12310-12317

dose-dependent reduction in the mRNA and 
protein levels of Col I, Col III, and α-SMA in 
human HS explants (Figure 4A, 4B), which was 
in accordance with the results in in vitro HSFs. 
Furthermore, H&E staining showed that emodin 
resulted in thinner and orderly arranged colla-
gen fibers (Figure 4C). Collectively, these data 
suggest that emodin also exerts its anti-fibrotic 
properties in an ex vivo HS model.

Emodin exerts anti-fibrosis effects through 
regulation of p38/MAPK signaling

The p38/MAPK and ERK1/2 members of the 
MAPK signaling subfamily, are closely associ-
ated with fibrogenesis [19]. In the present 
study, as demonstrated in Figure 5, emodin 
treatment did not significantly affect ERK1/2 
phosphorylation, but led to a remarkable, dose-
dependent reduction of phosphorylated p38 in 
HSFs, indicating that emodin exhibits anti-fibro-
sis activities partly through inactivation of the 
p38/MAPK signaling pathway.

Discussion

In our present investigation, the potential ther-
apeutic properties of emodin in inhibiting HS 
formation was investigated. Emodin repressed 
HSF proliferation, induced HSF apoptosis, and 
inhibited Col I and Col III expression through 
inactivating the p38/MAPK signaling pathway.

At present, many of the natural agents that 
have been utilized as treatment options for HS, 
including baicalein [20], galangin [21], gallic 
acid [22] and kaempferol [23]. Some literature 
has reported that the therapeutic efficacy of 
emodin, a bioactive compound isolated from 
plants, is mediated through induction of apop-
tosis, anti-proliferation, and anti-adhesion [24] 

properties, which makes it a very promising 
drug for HS treatment. 

Regulation of dermal fibroblast proliferation 
and apoptosis is of great importance for con-
trolling HS formation [25]. Recent studies dem-
onstrated a potential anti-fibrotic function of 
emodin on other diseases, such as corneal 
fibroblasts [26], renal fibroblasts [27], and pul-
monary fibroblasts [28]. In the present study, in 
vitro validations were performed to further 
determine whether emodin affects HSFs prolif-
eration and apoptosis. Treatment of emodin 
displayed a significantly lower HSFs growth rate 
as evidenced by cell viability assay. Furthermore, 
FACS was used to assess the effects of emodin 
on apoptosis and found that treatment of emo-
din noticeably increased apoptosis of HSFs.

A mounting body of evidence indicates that 
excessive accumulation of collagen plays a crit-
ical role in HS formation, thus the inhibition of 
collagen synthesis is preferred in HS treatment 
[3, 6, 29]. Normal fibroblasts synthesize both 
Col I and Col III, but this synthesis becomes 
imbalanced with changes in the surrounding 
environment. Our present study reveals that 
emodin reduced the levels of Col I, Col III, and 
α-SMA, indicating that emodin could repress 
collagen synthesis and trans-differentiation of 
fibroblasts into myofibroblasts which was fea-
tured by less α-SMA expression. Pathological 
examination also showed that collagen fibers 
were significantly reduced upon emodin treat-
ments, which was in accordance with the in 
vitro findings. 

The molecular mechanisms involved in emodin-
mediated repression of collagen accumulation 
are not well understood. Our present data show 
that emodin caused a significant reduction of 

Figure 5. Emodin exerts anti-fibrosis effect through regulation of p38/MAPK signaling. Western blot analysis was 
performed to evaluate the protein expression of p-ERK1/2 and p-38 in HSFs. All values are expressed as mean ± 
SD. *P<0.05 versus HSFs treated with 0 μM emodin.
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phosphorylated p38 expression in HSFs, which 
supports previous studies that emodin had a 
rapid anti-fibrosis effect in animal models and 
in vitro experiments by regulation of p38/MAPK 
signaling pathway [13, 30]. The p38/MAPK 
pathway is also known to be implicated in HS 
formation. Li et al. reported that adipose tis-
sue-derived stem cells could exert an anti-
fibrotic function through the inhibition of the 
p38/MAPK signaling pathway [31].

Collectively, our findings disclose that emodin 
might exert significant anti-proliferative and 
apoptosis-promoting effects on HSFs in vitro, 
and inhibit collagen synthesis in cultured HS 
tissues through the p38/MAPK signaling path-
way. All of these results indicated that emodin 
serves as a promising agent for HS treatment 
and further studies will be needed to verify our 
current study using an animal model to assess 
the effect of emodin in suppression of HS for-
mation in vivo.
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