Original Article

Study on regulation of articular chondrocyte proliferation and apoptosis in rabbit models with berchemia lineata massage cream by scrapping

Keqiang Hou¹, Guangyun He², Ming Fang¹, Enling Guan³, Guanwei Fan⁴, Chunxu Li¹

Departments of ¹Rehabilitation, ²Pharmacy, ³Otolaryngology, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, Shandong Province, China; ⁴Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin City, China

Received November 2, 2018; Accepted December 12, 2018; Epub May 15, 2019; Published May 30, 2019

Abstract: Objective: To explore the influence of scrapping with berchemia lineata massage cream on the regulation of articular chondrocyte proliferation and apoptosis in rabbit models. Methods: A total of 80 healthy and clean Japanese white big-ear rabbits were selected to establish an arthritis model. They were divided into study group (n=40) and control group (n=40) in the principle of similar weight. The rabbits in the study group were scrapped with berchemia lineata massage cream for 4 weeks. TdT-mediated dUTP Nick-End Labeling (TUNEL) method was adopted to detect the apoptosis rate of chondrocytes, and Western blotting method was used to detect the expression levels of B-cell lymphoma-2 (Bcl-2) protein, Bcl-2 associated X (Bax) protein, Caspase-3 protein and proliferating cell nuclear antigen (PCNA) in the chondrocytes so as to analyze the effects of scrapping with berchemia lineata massage cream on the treatment of rabbit arthritis models. Results: The apoptosis rate of chondrocytes and the expression levels of Caspase-3 protein and Bax protein in the study group were significantly lower than those in the control group (all P<0.001). Moreover, the expression levels of PCNA protein and Bcl-2 protein in the study group were obviously higher than those in the control group (P<0.001). Conclusion: The scrapping with berchemia lineata massage cream can promote the proliferation of osteoarthritic chondrocytes and inhibit the apoptosis of chondrocytes. In addition, it can be used as a potential treatment for relieving the condition of arthritis.

Keywords: Scrapping with berchemia lineata massage cream, arthritis, chondrocytes, cell proliferation, apoptosis

Introduction

Osteoarthritis is a common arthropathy which is one of the major causes of loss of work and labor abilities in the population [1]. Osteoarthritis ranks fourth in disabling diseases and usually causes chronic musculoskeletal pain. Joint pain is the common clinical manifestation of osteoarthritis [2]. Osteoarthritis can occur at any age with the highest incidence among the elderly. Its incidence rate in the elderly aged above 70 years old is almost 100%, which is extremely harmful [3]. According to WHO statistics, there are currently 210 million patients with osteoarthritis in the world. Osteoarthritis occupies the 5th place among male diseases and the 7th among female diseases. The incidence rate has been high [4]. Osteoarthritis is likely to be a major factor endangering the health and labor ability of the elderly [5]. Articular cartilage degradation is the main characteristic of pathological changes in the development of patients with osteoarthritis. Chondrocytes play an important role in the protection and metabolism of cartilage [6]. The study of Poulet et al. showed that osteoarthritis in the body will gradually cause apoptosis of chondrocytes which is the main cause of arthropathy in the development of osteoarthritis [7]. Therefore, the exploration of a drug to inhibit the degradation of articular cartilage and the apoptosis of chondrocytes has been the focus of clinical research.

Berchemia lineata massage cream is composed of multiple drugs. It has the effects of stasis removing and bleeding stopping as well as cough preventing and pain relieving clinically [8]. However, there is little study on its effects on the treatment of osteoarthritis in patients
Regulation of articular chondrocyte proliferation and apoptosis in rabbit models

and its mechanism. Therefore, in this study, the effects of scrapping with berchemia lineata massage cream on the articular chondrocyte proliferation and apoptosis in rabbit arthritis models were observed, and the treatment effects and the mechanism of the cream were discussed, providing a reference for the future clinical application of scrapping with berchemia lineata massage cream.

Materials and methods

Experimental animals

Eighty healthy adult Japanese white big-ear rabbits aged 28-32 weeks and weighed 1.90±0.11 kg which were purchased from Shanghai Fengxian Huihuang Farm (certificate of approval: SCXK (Hu) 2009-0022) and fed in a clean environment (temperature: 24.16±1.03°C; humidity: 54.06±4.76%). During the study, the rabbits could take food and drink water freely. This study strictly followed the hospital's ethical principles of welfare for animal experiments.

Instrument, reagents and drugs

Optical microscope purchased from Beijing Rico Zhongyi Technology Co., Ltd.; test kits for B-cell lymphoma-2 (Bcl-2) protein, Bcl-2 associated X (Bax) protein, Caspase-3 protein and proliferating cell nuclear antigen (PCNA) purchased from Abcam (Shanghai) Trading Co., Ltd.; the whole set of TdT-mediated dUTP Nick-End Labeling (TUNEL) kits purchased from Beyotime Institute of Biotechnology; berchemia lineata massage cream purchased from Anguo Qianxun Chinese Herbal Medicine Co., Ltd.

Experimental animal modeling and intervention

The 80 healthy and clean Japanese white big-ear rabbits were divided into study group (n=40) and control group (n=40) in the principle of similar weight. Modeling was conducted for the two groups of rabbits. With reference to the modeling method reported in the literature of Rieger et al., the rabbit osteoarthritis model was established after the medial collateral ligament of the two back knees and the anterior and posterior cruciate ligament of the Japanese white big-ear rabbits were cut off, and the medial meniscus was excised [9]. Specific modeling method: The Japanese white big-ear rabbits lay on their back and were fixed on the operation table after they were anesthetized with 100 mg/kg chloral hydrate. Their knees bent to 90 degrees for disinfection. The medial knee joint patella was incised to make the anterior and posterior cruciate ligament exposed. Under direct vision, the medial collateral ligament was cut off, and the medial meniscus was excised. After surgery, the rabbits were immediately injected with penicillin. With reference to Animal Experimental Studies, the rabbits were injected with 200,000 U/d penicillin once every day for continuous 9 days to prevent infections [10]. After the surgery was completed, the Japanese white big-ear rabbits were driven to do activities for at least 15 min per day. During this time, they could take food and drink water freely. At the 4th week after surgery, X-ray examination of the knee joints was conducted for the white big-ear rabbits. The occurrence of subchondral bone sclerosis, bad joint alignment, joint space narrowing and subluxation of the joint indicated successful osteoarthritis modeling.

Treatment methods

Scraping with berchemia lineata massage cream was used for the treatment of Japanese white big-ear rabbits in the study group, while those in the control group did not receive any treatment. The rabbits were fixed with their knees bent to 90 degrees so as to make the knee joints fully exposed. The berchemia lineata massage cream was applied on the internal and external knee eyes of the patella, and the beginning and ending points of the medial collateral ligament and the anterior and posterior cruciate ligament, and scraping was conducted back and forth for 15 min. Later on, the aforementioned sites were massaged gently with the palm for 10 min so as to promote drug absorption. The treatment was conducted twice per day (one in the morning and the other in the evening) for continuous 4 weeks.

Specimen collection and index test

After the 4-week treatment was completed, the Japanese white big-ear rabbits were anesthetized with 3% pentobarbital sodium. The knee joint cavity was cut to take the cartilage tissue mass which was rinsed with frozen saline and
Regulation of articular chondrocyte proliferation and apoptosis in rabbit models

Table 1. General information of Japanese white big-ear rabbits in the study group and the control group

<table>
<thead>
<tr>
<th>Group</th>
<th>Study group (n=38)</th>
<th>Control group (n=37)</th>
<th>t/χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male (%)</td>
<td>23 (60.53)</td>
<td>20 (54.05)</td>
<td>5.166</td>
<td>0.349</td>
</tr>
<tr>
<td>Female (%)</td>
<td>15 (39.47)</td>
<td>17 (45.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td>2.153</td>
<td>0.186</td>
</tr>
<tr>
<td>≤30 weeks</td>
<td>20 (52.63)</td>
<td>19 (51.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>30 weeks</td>
<td>18 (47.37)</td>
<td>18 (48.65)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
<td>4.061</td>
<td>0.273</td>
</tr>
<tr>
<td>≤1.9 kg</td>
<td>24 (63.16)</td>
<td>22 (59.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>1.9 kg</td>
<td>14 (36.84)</td>
<td>15 (40.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor temperature (°C)</td>
<td>24.12±0.63</td>
<td>23.89±0.51</td>
<td>1.735</td>
<td>0.087</td>
</tr>
<tr>
<td>Indoor humidity (%)</td>
<td>54.45±3.03</td>
<td>55.16±2.37</td>
<td>1.128</td>
<td>0.262</td>
</tr>
</tbody>
</table>

Results

General information of Japanese white big-ear rabbits in the study group and the control group

The osteoarthritis model was established for Japanese white big-ear rabbits in this study. A total of 38 rabbit arthritis models were established successfully in the study group. The success rate was 95.0% (38/40). A total of 37 rabbit arthritis models were established successfully in the control group. The success rate was 92.50% (37/40). The gender and the age of the Japanese white big-ear rabbits as well as the temperature and humidity of the room where the rabbits were fed had no influence on the study (all P>0.05). See Table 1.

Apoptosis rate of chondrocytes in the study group and the control group

The apoptosis rate of chondrocytes (37.62±3.16%) in the study group was obviously lower than that (64.37±5.23%) in the control group (P<0.001). See Table 2.

Expression level of PCNA protein in the chondrocytes in the study group and the control group

The expression level of PCNA protein in the chondrocytes (0.535±0.231) in the study group

Detection of apoptosis

Some cartilage specimens were immersed in the stationary liquid to make paraffin embedding tissue slices. After the slices were treated with dewaxing hydrated protease, the apoptosis of chondrocytes was detected with TUNEL method strictly in accordance with the instructions for the use of TUNEL kits. Microscopic examination was performed with an optical microscope. Five fields were randomly selected from each slice for microscopic examination. Brownish-yellow granules were regarded as positive in the microscopic examination of slices. The percentage of apoptotic cells per 100 cells was called as the apoptosis rate.

Detection of Bax, Bcl-2, Caspase-3 and PCNA in the cartilage tissues

Western blotting method was used to detect Bax, Bcl-2, Caspase-3 and PCNA in the cartilage tissues. The cartilage tissues were fully ground to make tissue homogenate. Proteins were extracted to carry out polyacrylamide gel electrophoresis experiment. The proteins were transferred to polyvinylidene fluoride membrane after electrophoresis. The membrane was reacted at 37°C after it was sealed. Then primary antibodies of Bax, Bcl-2, Caspase-3 and PCNA (1:1,000) were added and placed overnight at 4°C. Thereafter, the horse radish peroxidase (HRP)-labeled secondary antibodies (1:1,000) were added, and the membrane was reacted at 37°C for 1.5 h. Staining, developing and photographing were conducted. The photos were stored for analysis. The gel analysis software (Quantity One 4.6.2) was used to detect the expression levels of Bax, Bcl-2, Caspase-3 and PCNA.

Statistical methods

SPSS 18.0 (Shanghai Cabit Information Technology Co., Ltd.) was used for statistical analysis. The measurement data were expressed as mean ± standard deviation (X±sd). t test was adopted for normally distributed data. Enumeration data were expressed with percentage. Chi-square test was adopted for the comparison between groups. P<0.05 suggested that there was statistical significance.
Regulation of articular chondrocyte proliferation and apoptosis in rabbit models

Table 2. Comparison of apoptosis rate of chondrocytes between the study group and the control group (X ± sd)

<table>
<thead>
<tr>
<th>Group</th>
<th>Case</th>
<th>Apoptosis rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study group</td>
<td>38</td>
<td>37.62±3.16</td>
</tr>
<tr>
<td>Control group</td>
<td>37</td>
<td>64.37±5.23</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td>26.890</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

Table 3. Comparison of the expression level of PCNA protein in the chondrocytes between the study group and the control group (X ± sd)

<table>
<thead>
<tr>
<th>Group</th>
<th>Case</th>
<th>PCNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study group</td>
<td>38</td>
<td>0.535±0.031</td>
</tr>
<tr>
<td>Control group</td>
<td>37</td>
<td>0.259±0.019</td>
</tr>
<tr>
<td>t</td>
<td></td>
<td>46.340</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

Note: PCNA, proliferating cell nuclear antigen.

was significantly higher than that (0.259±0.019) in the control group (P<0.001). See Table 3.

Expression levels of Bax protein and Bcl-2 protein in the chondrocytes in the study group and the control group

The expression level of Bax protein in the chondrocytes in the study group was notably lower than that in the control group (0.631±0.023 vs. 0.973±0.026, P<0.001). The expression level of Bcl-2 protein in the study group was remarkably higher than that in the control group (0.596±0.150 vs. 0.443±0.011, P<0.001). The ratio of Bcl-2 to Bax protein in the chondrocytes in the study group was higher than that in the control group (0.701±0.028 vs. 0.462±0.014, P<0.001). See Table 4.

Expression level of Caspase-3 protein in the chondrocytes in the study group and the control group

The expression level of Caspase-3 protein in the chondrocytes (0.259±0.110) in the study group was lower than that (0.437±0.028) in the control group (P<0.001). See Table 5.

Discussion

Osteoarthritis is often manifested as articular cartilage damage, degeneration and osteoarthritis in the patients. In the beginning, the disease is manifested as degenerative changes of articular cartilage which gradually involve the periosteum, bone and joint capsule, and then cause joint swelling, pain and even deformities in the patients. It is a chronic arthritis with pathological changes [11, 12]. The incidence of osteoarthritis is related to the age and chronic injury. Currently, the medical problems for the occurrence of osteoarthritis take up about 10% in the global population. The incidence of osteoarthritis in the elderly population has been high. Its disability rate is up to 50%. Osteoarthritis has become a major factor for the loss of labor ability in the elderly [13, 14]. Cartilage damage is the main pathological feature of osteoarthritis, and chondrocyte apoptosis is an important factor for cartilage damage. Chondrocytes takes up 2% in the total volume of cartilage tissues. They have multiple functions including the secretion and synthesis of matrices as well as the control of the distribution of extracellular matrix [15].

Apoptosis is a normal physiological reaction process in the body. Excessive apoptosis indicates pathological changes. The excessive apoptosis of chondrocytes will result in pathological reduction of chondrocytes, leading to decreased secretion and synthesis of cartilage matrix and causing degenerative changes of articular cartilage [16, 17]. Bax, Bcl-2 and Caspase-3 are all apoptosis factors, and the Bcl-2 protein family has the functions of apoptosis resistance and apoptosis promotion. The ratio of apoptosis-inhibiting factor to apoptosis-promoting factor is closely related to cell viability [18, 19]. The Bcl-2 protein family, a major regulatory factor for apoptosis, plays a key role in maintaining cell differentiation and development as well as cell counts. Bax can promote apoptosis, while Bcl-2 can inhibit apoptosis. Therefore, the ratio of Bax to Bcl-2 determines the viability of chondrocytes [20, 21]. When the ratio of Bax to Bcl increases, cytochrome C can enter cells and mitochondria, which in turn can activate Caspase-3. Caspase-3 is the most important terminal cleavage enzyme in the process of apoptosis, which can activate endonuclease, inhibit repair of DNA damage and promote apoptosis [22]. The over-apoptosis of chondrocytes can simultaneously initiate the proliferation of chondrocytes in the body, thus maintaining a balanced state of the body [23].
The results of this study showed that after treatment, the apoptosis rate of articular chondrocytes in Japanese white big-ear rabbits was decreased noticeably, the expression level of Bax protein in the chondrocytes was reduced significantly, the expression level of Bcl-2 protein in the chondrocytes was increased notably and that of Caspase-3 protein in the chondrocytes was reduced prominently, indicating that the scrapping with berchemia lineata massage cream could alleviate the condition of arthritis.

PCNA, a protein with a molecular weight of 36kd, is involved in the repair of DNA damage, plays a key role in the initiation of cell proliferation and can be used as an important index for evaluating the state of cell proliferation [24]. The results of this study showed that the expression level of PCNA protein in the chondrocytes of the Japanese white big-ear rabbits was remarkably increased after treatment, suggesting that the scrapping with berchemia lineata massage cream could alleviate the condition of arthritis.

In conclusion, the scrapping with berchemia lineata massage cream can promote the proliferation of osteoarthritic chondrocytes and inhibit the apoptosis of chondrocytes. In addition, it can be used as a potential treatment for relieving the condition of arthritis.

Acknowledgements

This work was supported by Technology Support Project in Huangdao District, Qingdao, Shandong Province (2014-1-100).

Disclosure of conflict of interest

None.

Address correspondence to: Guangyun He, Department of Pharmacy, Traditional Chinese Medical Hospital of Huangdao District, Qingdao, No.158 Hainan Island Road, Huangdao District, Qingdao 266500, Shandong Province, China. Tel: +86-0532-86858887, Fax: +86-0532-86858887; E-mail: heguangyun001234@163.com

References

Regulation of articular chondrocyte proliferation and apoptosis in rabbit models

[18] Lee JI, Balolong E, Jr., Han Y and Lee S. Stem cells for cartilage repair: what exactly were used for treatment, cultured adipose-derived stem cells or the unexpanded stromal vascular fraction? Osteoarthritis Cartilage 2016; 24: 1302-1303.

[23] Jorgensen C, Noël D, Toupet K. Mesenchymal stem cells derived exosomes and microparti-
Regulation of articular chondrocyte proliferation and apoptosis in rabbit models

cles protect cartilage and bone from degradation in osteoarthritis. Scientific Reports 2017; 7.