Original Article
The association between the EPHA3 gene polymorphism and non-syndromic cleft lip with or without palate in the western Han Chinese population

Yulan Zhou1, Jiayu Shi2*, Bing Shi1, Zhonglin Jia1

1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cleft Lip and Palate, West China Hospital of Stomatology, Sichuan University, Chengdu, China; 2Division of Growth and Development and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, USA.

*Equal contributors.

Received April 29, 2020; Accepted July 17, 2020; Epub September 15, 2020; Published September 30, 2020

Abstract: Non-syndromic cleft lip with or without palate (NSCL/P) is a common craniofacial congenital disease which results from multiple susceptibility genes and adverse environmental factors. A recent study reported that the T allele of rs7650466 of the EPHA3 gene is a genetic risk factor in the etiology of NSCL/P among the northern Chinese Han population. This study aimed to evaluate the association between the EPHA3 gene variations and NSCL/P in the western Han Chinese population. Here, we conducted targeted region sequencing around rs7632427 (EPHA3) among 159 unrelated NSCL/P cases from the western Han Chinese population and performed a gene-based burden analysis on the rare variations and a single variation association analysis on the common SNVs (single nucleotide variants). Then we found 438 SNVs and 120 indels in all. A burden analysis showed no statistical significance. The association analysis results suggested that the common SNV rs13094064 was associated with NSCL/P (P=1.86E-07 and OR=0.17), and rs7632427 was most closely related to NSCLO (P=7.49E-05 and OR=0.315). Our study primarily confirmed that the EPHA3 gene was associated with NSCL/P in the western Han Chinese population, making available scientific evidence for future research and genetic counseling.

Keywords: Non-syndromic cleft lip with or without palate, EPHA3 gene, single nucleotide variants (SNVs), single nucleotide polymorphism (SNPs)

Introduction

Cleft lip with or without palate (CL/P) is one of the most common oral and craniofacial congenital diseases, with an incidence of one in every 700 newborns worldwide. In China, the incidence rate is about 1.67%, including 2.7% for cleft palate only (CPO), 5.6% for cleft lip only (CLO) and 8.2% for cleft lip and palate (CLP) [1, 2]. According to its clinical phenotypic characteristics, it can be divided into syndromic cleft lip with or without palate (SCL/P) and non-syndromic cleft lip with or without palate (NSCL/P) [3]. The approximately 70% of the CL/P patients who have no apparent deformity of other parts of the body are collectively known as NSCL/P. Moreover, NSCL/P presents a more complicated pathogenesis due to the combined effects of multiple genetic mutations and environmental risk factors compared with SCL/P [3, 4]. Unfortunately, once a baby is born with NSCL/P disease, the family faces lots of problems, such as feeding difficulties, speech loss, craniofacial deformity, psychological barriers, and social integration problems, etc. and also bears severe economic burden because of the need for multiple surgeries and multidisciplinary integrated sequence therapies [5]. Despite the rapid development of modern medicine, the long and painful treatment process of NSCL/P is always unsatisfactory for the patients. So, it is urgent to deeply explore the pathogenesis of this birth defect and strive to provide some scientific theoretical basis for the early diagnosis and treatment of NSCL/P at the level of molecular genetics.
EPHA3 is associated with the pathogenesis of NSCL/P

Many studies have been carried out on the etiological mechanism of NSCL/P. Genome-wide association studies (GWAS) have provided valuable guidance for researchers to capture new susceptibility loci and genes of NSCL/P [6-9], such as MAFB and ABCA4 [6], rs8049367 between CREBBP and ADCY9 and loci at 1q32.2, 2q35, 10q25.3, 17p13.1 and 20q12 [7], rs7590268, rs7632427, rs12543318, and rs1873147 [8], 1p36, 2p21, 3p11.1, 8q21.3, 13q31.1, and 15q22 [9]. Obviously, GWAS were widely performed in studying the pathogenesis of complex genetic diseases due to the advantages of high efficiency, sensitivity, and wide range, but GWAS were also limited by racial and regional differences. So it is understood that the verified P values of the susceptible genes associated with NSCL/P varied among the different countries and ethnic groups, which also indicated that the correlation strength was different. Based on the previous studies, our research team also conducted a series of relevant studies among the western Han Chinese population as follows. Jiang et al. [10] once revealed a strong association between the allele G at SNP rs4791774 of the NTN1 gene and NSCLO and further enhanced the evidence in the etiology of NSCL/P. In view of the research based on the MAFB gene, a genotypic transmission-disequilibrium test (TDT) analysis confirmed that the C/C homozygote at rs17820943 and T/T homozygote at rs13041247 were over-transmitted and both the C allele at rs17820943 and the T allele at rs13041247 were over-transmitted among NSCL/P patients, suggesting that the MAFB gene was a susceptibility gene for NSCL/P [11]. Other studies also confirmed that rs12543318 was associated with NSCLO and that the allele A at rs7078160 of the VAX1 gene was a risk factor for NSCL/P [12, 13]. However, there was no evidence associated with the EPHA3 gene among NSCL/P patients in the western Han Chinese population.

EPHA3, located on the 3p11.1 chromosome, belongs to the ephrin receptor subfamily of the protein-tyrosine kinase family. Receptor tyrosine kinase (RTK) signaling pathways are both functionally conserved and diverse, and regulate cell-cell physiological interactions such as cell migration guidance, axon pathway guidance for angiogenesis, stem cell maintenance and metastasis, neural network formation and neural tube formation, etc. [5, 14, 15]. GWAS once identified the SNP of rs763242 at EPHA3 which was associated with NSCL/P patients (Asian & European) and found that EPHA3 played an important regulatory function in the development of cranial and maxillofacial structure [8, 9]. Before this, Maunakea et al. [16] confirmed that there was a strong methylation site approximately 200 bp downstream of rs7632427 near EPHA3. This was a valuable discovery for the functional study of the EPHA3 gene and NSCL/P. Recently, Chen et al. [5] discovered that the SNP rs7650466 of EPHA3 gene was associated with NSCL/P in the northern Chinese population and also confirmed that rs7650466 was associated with NSCL/P, but not NSCPO, after a stratified analysis. But there is no other study that confirms the association between the EPHA3 gene variations and NSCL/P among the western Han Chinese population.

In this study, we performed a targeted deep sequencing based on the haplotype (hg19: chr3:89,412,794-89,552,876) around rs7632427 (EPHA3) to elucidate the relationship between the EPHA3 gene and the occurrence of NSCL/P in the western Han Chinese population (Figure 1).

Materials and methods

Samples

In this study, 159 unrelated NSCL/P patients (including 79 cases of NSCLO and 80 cases of NSCLP) from the western Han Chinese population (Table 1), including Chongqing, Sichuan, Guizhou, and Yunnan provinces etc., were collected at the Department of Cleft Lip and Palate Surgery, West China College of Stomatology, Sichuan University. All the enrolled patients were diagnosed by a professional physician team to rule out deformities in other parts of the body. To perform the case-control burden analysis and the association analysis, we used 542 normal individuals’ WGS data from the Novogene internal database (http://www.novogene.com/) as controls. All of the subjects or their guardians read and signed the informed consent before enrolling in this study, and the experimental study program was approved by the Hospital Ethics Committee of West China Hospital of Stomatology, Sichuan University (WCHSIRB-D-2016-012R1).
EPHA3 is associated with the pathogenesis of NSCL/P

Figure 1. The targeted sequencing region of rs7632427 at EPHA3 Hg18.
Peripheral venous blood was collected from the patients, and their DNA was extracted using the salting out method. Then it was stored in a Tris-EDTA buffer in a freezer kept at -80°C. The quality of the extracted DNA was verified in the following ways: 1) run 1% agarose gel electrophoresis to confirm the DNA degradation and suspected RNA/Protein contamination; 2) use the NanoPhotometer® spectrophotometer (IMPLEN, CA, USA) (OD260/OD280) to identify the DNA purity and concentration. The OD value of a qualified sample is between 1.8 and 2.0. All the samples met the sequencing requirements.

Deep sequencing

We picked the haplotype region spanning hg19:chr3:89,412,794-89,552,876 based on the linkage imbalance (LD) structure in the CHB/JPT HapMap around rs7632427 (EPHA3) for the targeted deep sequencing (Figure 1). The sequence of this region was captured and enriched from the genomic DNA using the Agilent liquid capture system (Agilent SureSelectXT Custom Kit) according to the manufacturer’s protocol, then sequenced on Illumina Hiseq 4000 for paired-end 150 bp reads.

Bioinformatics analysis

All the raw data was organized using the pipeline bioinformatics analyses procedure. The original results in the BAM format were presented using valid sequencing data according to the reference genome (GRCh37/hg19) with Burrows-Wheeler Aligner (BWA) software. And the bam files were sorted and marked with Samtools and Picard, and we generated a final bam draft. The variation calling and identification of SNP were performed using Samtools mpileup, and bcftools. The variation position, variation type, conservative prediction and other information were recognized through various databases, such as dbSNP, 1000 Genome, HGMD, CADD, and ExAC. The gene transcript annotation databases, such as RefSeq, Consensus CDS, Ensemble and UCSC, were used for their exonic variations to determine the amino acid alternation, and the protein functional prediction for the nonsynonymous SNVs was performed using PolyPhen-2, CADD, SIFT, and MutationTaster.

Statistical analysis

In this study, we performed the Hardy-Weinberg equilibrium (HWE), and the minor allele frequency (MAF) among the 542 normal controls WGS data from the Novogene internal database (http://www.novogene.com/) at each common variation. For the common variations (MAF ≥ 0.01) such as the HWE test and the MAF determination, association analyses were performed using PLINK. For the rare variations, we included non-synonymous variations with a database MAF threshold (MAF < 0.01 in CHB & CHS from the 1000 Genome database and the Novogene internal database, MAF < 0.001 in GnomAD) and bioinformatics predictions as harmful variations using at least two of the four software programs (SIFT, Polyphen, MutationTaster, and CADD) to do the gene based burden analysis with two-tailed Fisher’s exact tests by PLINK. The significant threshold was taken as 7.86E-05 (P=0.05/636 SNV) after multiple corrections.

Results

Sequencing data

Of the 159 NSCL/P patients, we identified 438 SNVs and 120 indels in all. Of these, 224 SNVs and 71 indels did not exist in the 1000 Genome database, which included one deleterious novel variation (NM_005233: c.T1634C:p.I545T). It is much conserved across several species. Sanger sequencing targeting the NM_005233: c.T1634C:p.I545T variation were performed among the NSCLP carrier and his parents, showing that the variation was inherited from his unaffected mother (Figure 2).
The variations with call rates > 95% were split into two groups: common variations (with minor allele frequency, MAF 0.01) and rare variations (MAF < 0.01) based on database threshold.

Gene based burden analysis

There was only one variation, NM_005233: c.T1634C:p.I545T, that conformed to the inclusion standard, and the results show no significance (data not shown).

Association analysis

To determine whether the single SNVs around the EPHA3 were associated with NSCL/P, we selected the SNVs with a call rate ≥ 95% in both the cases and the controls, and those with an HWE-p value above 0.000001 in the controls. Finally, there are 462 SNVs in NSCLO, 481 SNVs in NSCLP, and 636 SNVs in NSCL/P (NSCLO & NSCLP) that passed the threshold, and they were enrolled in the association analysis. The results showed rs7632-427 is significantly associated with NSCLO (P=7.49E-05, OR=0.32) (Table 2 and Figure 3) and rs13094064 is significantly associated with NSCL/P (P=1.86E-07, OR=0.17) (Table 2) after multiple corrections.

Discussion

NSCLO/P has significant genetic heterogeneity and is thought to be affected by a combination
<table>
<thead>
<tr>
<th>Cleft type</th>
<th>SNP</th>
<th>Bp (hg19)</th>
<th>REF</th>
<th>ALT</th>
<th>AF</th>
<th>Case</th>
<th>Control</th>
<th>P</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alt</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alt</td>
<td>Ref</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSCLO</td>
<td>rs7632427</td>
<td>89534377</td>
<td>T</td>
<td>C</td>
<td>6.96%</td>
<td>11</td>
<td>147</td>
<td>208</td>
<td>876</td>
</tr>
<tr>
<td></td>
<td>rs13094064</td>
<td>89418822</td>
<td>A</td>
<td>G</td>
<td>1.92%</td>
<td>3</td>
<td>153</td>
<td>111</td>
<td>971</td>
</tr>
<tr>
<td></td>
<td>rs11918555</td>
<td>89541934</td>
<td>C</td>
<td>T</td>
<td>7.59%</td>
<td>12</td>
<td>146</td>
<td>207</td>
<td>877</td>
</tr>
<tr>
<td></td>
<td>rs12637608</td>
<td>89551301</td>
<td>T</td>
<td>C</td>
<td>10.13%</td>
<td>16</td>
<td>142</td>
<td>226</td>
<td>858</td>
</tr>
<tr>
<td></td>
<td>rs7650184</td>
<td>89530057</td>
<td>C</td>
<td>A</td>
<td>10.13%</td>
<td>16</td>
<td>142</td>
<td>226</td>
<td>858</td>
</tr>
<tr>
<td>NSCLP</td>
<td>rs13094064</td>
<td>89418822</td>
<td>A</td>
<td>G</td>
<td>1.90%</td>
<td>3</td>
<td>153</td>
<td>111</td>
<td>971</td>
</tr>
<tr>
<td></td>
<td>rs10233559</td>
<td>89525297</td>
<td>A</td>
<td>T</td>
<td>2.56%</td>
<td>8</td>
<td>304</td>
<td>83</td>
<td>989</td>
</tr>
</tbody>
</table>

Note: BP, base pair position; Ref, reference allele; Alt, alternate allele; AF, allele frequency; P, p value; OR, odds ratio; NSCLO, non-syndromic cleft lip only; NSCLP, non-syndromic cleft lip with a cleft palate; NSCL/P, non-syndromic cleft lip with or without a cleft palate (NSCLO & NSCLP). We only listed the SNPs with p-values less than 0.005 in this table.
EPHA3 is associated with the pathogenesis of NSCL/P

Figure 3. An LD plot of the association results by cleft groups.
EPHA3 is associated with the pathogenesis of NSCL/P

tongue mesenchyme [26]. Moreover, Kousa et al. [27] indicated that the interaction of the
IRF6 and RTKs signaling pathways was associated with human orofacial development and
RTKs signaling components, including members of the FGF, EPHA3, and SPRY2, and might
also increase a risk for isolated orofacial clefting. Based on the above studies, it is clear that
the Eph and ephrin receptors are particularly important for the occurrence of NSCL/P.
However, there has been no evidence to show the association between the EPHA3 gene and
NSCL/P in the western Han Chinese population until now.

This study divided 159 unrelated NSCL/P patients into two groups (the NSCLO group and
the NSCLP group) for a stratified analysis to explore the association (Table 1). The minor
allele frequency (MAF) of all the significant SNPs (Table 2) were consistent with the CHB &
CHS data from the 1000 Genome database, and the genotype frequencies were consistent
with the Hardy-Weinberg equilibrium (HWE), confirming the representativeness of the data
in our research. The Sanger sequencing method was also used to filter the de novo deleterious
mutations among the patients and their parents. Based on the gene burden analysis, only one variation - NM_005233: c.T1634C:p.
I545T - conformed to the inclusion standard. The susceptible variation in this region was
inherited from an unaffected mother (Figure 2) and revealed that parents carrying the risky
SNPs could have an increased risk of giving birth to a baby with cleft. And the function of this locus needs to be demonstrated in subsequent functional studies. Most prominently, rs7632427 of EPHA3 gene had an observably strong correlation with NSCLO in the western Han Chinese population (P=7.49E-05 and OR=0.31) (Table 2). However, the correlation of rs7632427 among NSCL/P (P=0.00584 and OR=0.606) was not as strong as NSCLO. We speculated that rs7632427 contributed to the NSCLO phenotype specifically. Otherwise, rs13094064 was significantly associated with NSCL/P in the western Han Chinese population (P=1.86E-07 and OR=0.17) (Table 2). But the association of rs13094064 was not statistically significant in the NSCLO group (P= 0.00017 and OR=0.17) or in the NSCLP group (P=0.00017 and OR=0.17) (Table 2). So, we speculate that the rs13094064 of the EPHA3 gene contributes the most to NSCL/P. By comparing the P values and ORs of the NSCLO and
NSCLP subtypes, we found that the susceptibility SNPs may contribute to each subtype differ-
ently due to the distinct embryological development mechanisms. Similarly, Huang etc. [28]
indicated that susceptibility genes were different for the specific subtypes of NSCL/P by per-
forming a genome-wide association study and making an interesting point that IRF6 has the
opposite effect among CLO and CPO due to the gene expression dosage of IRF6. In this
research, 11 genes/loci for CPO and 9 genes/loci for CLO were identified in all, such as: IRF6
associated with all three subtypes: CPO, CLO, and CLP; IRF2, NSD1, and ALX1 significantly
contributed to CLO; MAFB, MYCN, and VAX1 mainly associated with CLO and CLP; PAX9,
PAX4, WHSC1, FOXC2, and FOXF1 significantly contributed to CPO, etc. [28]. This view was
consistent with the differences in the association between the SNPs and the different sub-
types of NSCL/P in our study.

Single Nucleotide Polymorphisms (SNPs) refer to variations in a single nucleotide on a genome. The type of non-synonymous SNPs refers to that a change in the base sequence may alter the corresponding protein sequence, thus affecting the function of the protein. This change was usually the direct cause of changes in biological traits. In this study, although the SNPs rs7632427/rs13094064 are located in the intergenic/intronic region of the EPHA3 gene, these mutations might still affect the gene expression and cause a relevant dysfunc-
tion in some way. This view should be further confirmed in future studies. In conclusion, our
study confirmed that EPHA3 gene variations were associated with NSCLO/P, and as an impor-
tant part of the etiology of NSCL/P. Moreover, current researches also confirmed the com-
plexity of the pathogenesis of NSCL/P. The research, conducted by Fontoura et al. [29],
showed a strong association between the rs1530364 of WNT9B and NSCL/P in Brazilian
families, but no association for SNPs in WNT3. Cura et al. [30] suggested an important role of
the SNAI1 gene in the pathogenesis of NSCL/P and also indicated that the variations in the ep-
ithelial mesenchymal transformation (EMT) in orofacial development can contribute to
NSCL/P. Other studies also supplemented the evidence for revealing the susceptibility sites of
NSCL/P, including rs34246903 of MSX1, rs762642 of BMP4, rs6127973 of BMP7, and rs908822 of SPRY1, etc. [31-34].

However, there are some limitations to our study. First, the sample size was relatively small for basic genetic disease research. Second, our study only analyzed the association between the EPHA3 gene and NSCL/P, ignoring the influence of the environmental factors completely. Zhou et al. [34] found that people with a haplotype of the SPRY2 gene exposed to harmful environmental factors can have an increased risk of NSCL/P, compared to those who remain unexposed. Third, further study is still necessary to elucidate the interaction between NSCL/P and the family of receptor tyrosine kinases (RTKs), including the EPHA3 gene.

Conclusion

In aggregate, our study further confirmed that the SNPs of the EPHA3 gene can contribute to the occurrence of NSCL/P in the western Han Chinese population, making available scientific evidence for future research and genetic counseling.

Acknowledgements

We sincerely thank all of the patients and their families at the recruitment sites for their recognition and participation in this study, and we also gratefully acknowledge the invaluable assistance of all the clinicians, nurses, laboratory staff, and other participants who give us countless contributions to this study. This project was supported by the Major Frontier Issues of the Application Foundation Project of the Sichuan Science and Technology Department (2020J0211) and the National Science Funds of China (No. 81600849).

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Zhonglin Jia, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, Renmin Nan Road, Chengdu 610041, China. Tel: +86-02885503462; Fax: +86-02885502848; E-mail: zhonglinjia@sina.com

References

EPHA3 is associated with the pathogenesis of NSCL/P

EPHA3 is associated with the pathogenesis of NSCL/P